

Preserving Virtual Reality Artworks

Tom Ensom & Jack McConchie

Time-based Media Conservation, Conservation Department, Tate

Document Version: 01.00

Document Date: 13 August 2021

Document Licence: Creative Commons BY-SA 4.0 Licence

Abstract

This report introduces virtual reality (VR) technologies and identifies the challenges artists and

the cultural heritage sector face in achieving the long-term preservation of artworks which

make use of them. It was produced as part of Tate’s Preserving Immersive Media Project, an

ongoing research project developing strategies for the preservation of artworks which utilise

immersive media such as 360 video, real-time 3D, virtual, augmented and mixed reality. This

report is intended to inform those interested in the preservation of VR artworks, particularly

time-based media conservators, as to the components they are likely to receive when

acquiring VR artworks, their characteristics and dependencies, and their vulnerability in terms

of long-term preservation. The report concludes with recommendations for artists and

institutions who are dealing with the immediate problem of caring from VR artworks, and with

recommendations for further research.

https://creativecommons.org/licenses/by-sa/4.0/

2

Acknowledgements

This research was supported by Tate’s Conservation Department. Thanks to Louise Lawson

for project management and to Deborah Potter for editing suggestions.

This research was also supported in part by Lumen Art Projects Ltd. Thanks to Carla Rapoport

and Jack Addis for their project support and network introductions.

Thank you to the artists we interviewed during this research for their insight into their working

practice: Lawrence Lek, Michael Takeo Magruder, Winslow Porter, Jakob Kudsk Steensen,

James Stringer, Milica Zec. Thanks to Judy Willcocks and Dom Biddulph for instigating a case

study from the Museum & Study Collection at Central Saint Martins, UAL.

Thank you to Dragan Espenschied and Claudia Roeck, with whom we organised the iPRES

2019 VR hackathon in Amsterdam, and to all those who participated in the event.

Thank you to the members of the Preserving Immersive Media Group1 for their insight and

feedback on our work during the course of this project, particularly those who participated in

our first meeting in 2019: Edward Anderson, Rasa Bočytė, Nelson Crespo, Savannah

Campbell, Phillipa Day, David Edge, Patricia Falcão, Mark Hellar, Stephen McConnachie,

Claudia Roeck. Thanks also to Brandon Butler for his clarifications regarding fair use and

copyright in the US on an early draft.

1 The Preserving Immersive Media Group (PIMG) is a mailing list and meeting series established by

the Preserving Immersive Media Project, based on Group.io: https://groups.io/g/pimg/

https://groups.io/g/pimg/

3

Contents

Abstract 1

Acknowledgements 2

Contents 3

1. Introduction 5

2. VR Systems 8

2.1. VR System Hardware 8

2.1.1. Head-Mounted Displays 9

2.1.2. Tracking Systems 10

2.1.3. Controllers 11

2.1.4. Computers 12

2.2. VR System Software 13

2.2.1. VR Runtimes 15

2.2.2. Operating Systems 18

2.2.3. 3D APIs 18

2.2.4. VR Device Drivers 20

2.2.5. GPU Drivers 20

3. Real-Time 3D VR 21

3.1. Real-Time 3D VR Production Materials 21

3.1.1. Engines and Project Files 21

3.1.2. Scenes and Assets 24

3.2. Real-Time 3D VR Applications 27

3.2.1. Application Packages 27

3.2.2. Executing an Application 28

3.3. Real-Time 3D VR Documentation 30

3.3.1. Acquisition Information Template 30

3.3.2. User-Perspective Video Capture 31

4. 360 Video 33

4.1. 360 Video Production Materials 33

4.1.1. Camera Capture 33

4.1.2. Stitching 33

4.1.3. Projection Format 34

4.2. 360 Video Audio 36

4.2.1. Order of Ambisonics 36

4.2.2. Ambisonic Formats 37

4

4.2.3. Head-related Transfer Functions 37

4.2.4. Format Conventions 37

4.3. 360 Video File Types & Metadata 37

4.3.1. Aspect Ratio and Resolution 37

4.3.2. Frame Rates 38

4.3.3. File Sizes 38

4.3.4. Metadata 39

4.4. 6DOF & Volumetric Video 39

5. Suitability of Existing Preservation Strategies 41

5.1. Acquiring VR Artworks 41

5.1.1. Acquiring Real-Time 3D VR Artworks 41

5.1.2. Acquiring 360 Video VR Artworks 43

5.2. Hardware Stockpiling 44

5.3. Hardware Migration 45

5.4. Emulation and Related Approaches 46

5.5. Code Migration and Related Approaches 48

6. Summary and Recommendations 52

6.1. Recommendations for Artists 54

6.2. Recommendations for Collecting Institutions 55

6.3. Recommendations for Further Work 56

5

1. Introduction

Tate is a major arts institution that houses the United Kingdom’s national collection of British,

international and contemporary art. Tate’s Conservation department works to ensure that this

collection is appropriately cared for and remains displayable in the long-term. The Time-based

Media Conservation team is concerned with the preservation of video, slide, film, audio,

performance and, more recently, software-based artworks. As part of the department’s

research programme, Tate keeps abreast of new technologies and their use in contemporary

art, to ensure preparedness as the collection grows and diversifies. This has led to a new area

of research exploring the preservation of artworks using immersive media. We use this

umbrella term to describe various related technologies, including virtual reality (VR),

augmented reality (AR) and mixed reality (MR) technologies, all of which have been designed

to immerse a user in a virtual space or combine virtual and physical spaces. This report

discusses a strand of the Preserving Immersive Media project2 which has focused on VR

artworks. This report will henceforth use the term VR artworks to refer to works which use 360

video or real-time 3D media and are designed to be viewed through a headset with some form

of motion tracking. We note a rapid expansion in the use of related technologies and an

evolving set of associated terminology, of which this report offers only a snapshot.

Related research at Tate precedes this project. Firstly, over the past decade the Time-based

Media Conservation teams have carried out extensive research on the conservation of

software-based art3456, of which immersive media forms a subset. As part of Tate’s Software-

based Art Preservation Project7, this research has recently informed the development of new

standardised workflows for new software-based artwork acquisitions. Recent acquisitions of

artworks using real-time 3D technologies, which are closely associated with VR, have

presented further opportunities to refine these. These have included John Gerrard’s Sow

Farm, near Libbey, Oklahoma 2009 (2009), acquired in 2015, and Ian Cheng’s Something

Thinking of You (2015), acquired in 2020. Research has also been carried out on the suitability

of virtual reality (VR) technologies to document complex physical installations of time-based

media artworks8. The insights, approaches and workflows developed in this body of research

offer a starting point for developing a strategy for preserving VR artworks.

2 More information about the Preserving Immersive Media project can be found on the Tate project

webpage: https://www.tate.org.uk/about-us/projects/preserving-immersive-media
3 Patricia Falcão, Developing a Risk Assessment Tool for the Conservation of Software-Based

Artworks,MA thesis, Hochschule der Künste Bern, 2010.
4 Pip Laurenson, ‘Old Media, New Media? Significant Difference and the Conservation of Software-

Based Art’, in Preserving and Exhibiting Media Art. Challenges and Perspectives, Amsterdam
University Press, Amsterdam, 2013.
5 Klaus Rechert, Patricia Falcão and Tom Ensom, Introduction to an Emulation-Based Preservation

Strategy for Software-Based Artworks, 2016, http://www.tate.org.uk/research/publications/emulation-
based-preservation-strategy-for-software-based-artworks.
6 Thomas Ensom, Technical Narratives: Analysis, Description and Representation in the Conservation

of Software-Based Art, Ph.D thesis, King’s College London, 2019,
https://kclpure.kcl.ac.uk/portal/en/theses/technical-narratives(e01bff94-08bd-4b83-aeef-
4e7d6d5b0dfc).html.
7 Tate, Software-based Art Preservation – Project, 2021, https://www.tate.org.uk/about-

us/projects/software-based-art-preservation.
8 Jack McConchie, VR tools as spatial documentation, presented at the American Institute for

Conservation Annual Meeting 2018, Houston, Texas, May 31, 2018.

https://www.tate.org.uk/about-us/projects/preserving-immersive-media
http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
https://kclpure.kcl.ac.uk/portal/en/theses/technical-narratives(e01bff94-08bd-4b83-aeef-4e7d6d5b0dfc).html
https://kclpure.kcl.ac.uk/portal/en/theses/technical-narratives(e01bff94-08bd-4b83-aeef-4e7d6d5b0dfc).html
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.tate.org.uk/about-us/projects/software-based-art-preservation

6

Beyond work at Tate, we also build on earlier exploratory research around the preservation of

VR. In her MA thesis, A Rift in Our Practices?: Toward Preserving Virtual Reality9, Savannah

Campbell explored the history and development of VR, and reflected on past and emerging

challenges in its preservation; particularly the failures of historical collecting efforts and the

need to consider VR systems holistically. She also points out that “there are currently no best

practices in place for preserving virtual reality hardware and software in cultural heritage

institutions” and proposes emulation and migration strategies as possible pathways. A report

by Candice Cranmer, Preserving the emerging: virtual reality and 360-degree video, an

internship research report10, reports on research undertaken during a six-week placement at

the Netherlands Institute of Sound and Vision in 2017. The report briefly discusses emulation

and migration, identifying potential feasibility issues with both. Cranmer’s research also points

to a need for further work to develop pragmatic strategies, as, “if institutions collect an array

of new technology before they are ready to preserve in a proactive manner, loss of files and

the integrity of the work may be compromised”.

As a starting point for our research, we determined that we would first need to identify the VR

technologies being used by artists and better understand their concerns regarding long-term

preservation. To do so, we consulted a group of artists and makers engaged in the production

of VR artworks through a series of interviews, studio visits and questionnaires. Based on

insights from this process, alongside topics identified in the prior research described above,

we identified three primary research aims:

1) To understand the key risks to the longevity of VR artworks created by the

interdependency, variability and obsolescence of VR hardware and software.

2) To explore the viability of available preservation strategies for time-based media

artworks when applied to VR artworks.

3) To develop pragmatic recommendations for the immediate care of VR artworks, aimed

at artists and collecting institutions.

The first aim is addressed primarily in Sections 2, 3 and 4. Based on insights from our

consultation with artists and makers, we were able to identify a set of common key components

of VR systems, including hardware, software and video formats. These sections report on the

findings of in-depth research into these key components, identifying their production and role

within the VR system, including variable characteristics and risk factors. This is organised into

specific component groups. Section 2 explores VR systems, which are the sets of off-the-shelf

VR hardware and software used to realise VR artworks. In Section 3 and 4 we examine the

production and display of the two major media types we identified: real-time 3D software and

360 video. The second aim is addressed in Section 5. For this work, we considered acquisition

workflows for similar media and widely used preservation strategies for software-based art,

grouped under four categories: stockpiling, hardware migration, emulation and code migration.

9 Savannah Campbell, A Rift in Our Practices, Toward Preserving Virtual Reality. MA thesis, New

York University, 2017,
https://miap.hosting.nyu.edu/program/student_work/2017spring/17s_thesis_Campbell_y.pdf.
10 Candice Cranmer, Preserving the Emerging: Virtual Reality and 360-Degree Video, internship

research report, Netherlands Institute for Sound and Vision, 2017,
http://publications.beeldengeluid.nl/pub/584/NISV_final_Candice-Krenmer.pdf.

https://miap.hosting.nyu.edu/program/student_work/2017spring/17s_thesis_Campbell_y.pdf
http://publications.beeldengeluid.nl/pub/584/NISV_final_Candice-Krenmer.pdf

7

For each of these we examine the extent to which, based on insights from Sections 2-4, they

may be applied to the long-term care of VR artworks. Finally, in Section 6 we reflect on our

findings and address aim three by offering a set of pragmatic steps that can be taken to

stabilise VR artworks in the short-term. We also propose sector-level goals for future research

and advocacy.

8

2. VR Systems

VR systems are the sets of interconnected hardware and software components which enable

access to VR content. The purpose of these systems is to transform inputs (such as 3D data

and tracking information) into the outputs (such as moving images and haptics) that create a

VR experience. This section presents an overview of the components of VR systems, which

we divide into two parts: hardware and software. While we make reference to the content

created by artists in this section (e.g. 360 video or real-time 3D software), this section focuses

primarily on off-the-shelf components which artists may select and source but do not typically

create themselves. These can be characterised as dependencies, on which the VR application

is dependent in realising a VR experience. While some dependencies might be critical to the

VR system functioning at all (e.g. an HMD and suitable driver), others may have more subtle

effects (e.g. a VR runtime artificially increasing frame rate). As these components tend to be

proprietary and closed source, there is limited information available about the way they

function, limiting the conclusions that can be drawn. We focus on describing the purpose and

characteristics of each component and discuss their impact on the overall VR experience.

Artist-produced VR content is explored further in 3. Real-Time 3D VR and 4. 360 Video.

2.1. VR System Hardware

VR systems involve an array of interlinked hardware components, which will typically include

a head-mounted display (HMD), tracking system and controller(s), all of which are connected

to a host computer. The relationships between these components are described in Figure 1

below. These systems are ultimately centered on the user through the tracking of their

movements and controller inputs, data from which is translated into interaction with virtual

space and thus the generation of the frames sent to the HMD.

Figure 1. Diagram of a typical VR hardware system.

9

In the majority of cases, all of these components must be present in order for an VR artwork

to be displayed, which creates immediate preservation risks through the potential for failure of

the hardware used. Likelihood of hardware failure is elevated for some VR hardware, such as

HMDs and controllers, as these are directly interacted with when installed. As for other

specialised hardware encountered in time-based media conservation, as time passes

obsolete components which stop functioning are likely to become impossible to replace with

an equivalent device. The hardware systems used by artists tend to be consumer-oriented

packages sold by a particular manufacturer and contain all the necessary hardware. The

hardware systems sold and supported by VR companies currently move through rapid

development and obsolescence cycles. For example, Oculus launched the consumer Rift in

March 2016 and replaced it with the Rift S in March 2019, while HTC launched the Vive in

April 2016 and replaced it with the Vive Pro in April 2018. In both cases, there were significant

changes to the hardware and connectivity. This can be contrasted to, for example, Sony’s 20”

PVM CRT monitors which were in production for over 20 years and remained compatible with

a consistent set of video standards.

2.1.1. Head-Mounted Displays

A head-mounted display (HMD) is a display device which is attached directly to a user's head.

HMD devices contain either one or two screens, positioned in order to display a monoscopic

or stereoscopic image at close proximity to the user's eyes. This close proximity creates a

wide field of view image in order to increase immersion, while stereoscopy creates the illusion

of depth perception. HMDs can be tethered (i.e. connected to a PC via physical cabling) or

untethered (i.e. either standalone or connected to a PC wirelessly). At the time of writing, the

latter is typically achieved by inserting a mobile device into an HMD (e.g. the Samsung Gear

VR) or using mobile technology integrated into the HMD itself (e.g. the Oculus Quest).

As we found HMDs were used by all the artists we spoke to, for the purposes of this report we

assume the use of these devices for viewing real-time 3D software and 360 video. There are,

however, other approaches that could be taken, such as large scale projection or video

monitor walls. It should be noted that in many cases an HMD could be substituted for a static

screen (along with keyboard, mouse or other peripheral device input to control viewing

direction).

We have identified the following variable characteristics among HMDs:

● Screen panels. There is variation in the type (LCD/OLED)11, colour reproduction, pixel

density, refresh rate, aspect ratio and latency of the panels embedded in HMDs.

● Lenses. In order to achieve clear visibility of the panels at close range and to maximise

field of view, thick Fresnel lenses are placed between the eye and the panels. The

image distortion they introduce must be corrected for in the frames sent to the HMD

(see 2.1.1. Head Mounted-Displays) using a hardware-specific algorithm (see 2.2.1.

11 A Real New World, Understanding VR HMD Display Technology, 2018,

https://realnewworld.com/vr-hmd-display-technology/.

https://realnewworld.com/vr-hmd-display-technology/

10

VR Runtimes) which can result in variation in the quality of the image across the field

of view.

● Field of view. In the context of HMD design, field of view (FOV) is the extent to which

the LCD panels completely cover the user's vision. This is a product of the panel and

lense combination used.

● Tethering. HMDs can be tethered, meaning they attach to a host computer system

(e.g. the Oculus Rift), or self-contained, meaning they contain a computer system (e.g.

the Oculus Quest).

● User experience. The experience of wearing an HMD can vary considerably based

on characteristics of its physical construction such as eye piece cushioning, strap

design and overall weight.

● User calibration. HMD manufacturers provide a calibration procedure to customise

the headset for the individual user e.g. interpupillary distance.

2.1.2. Tracking Systems

Tracking systems are used to capture the user's rotational and positional movement within

physical space, so that this can be translated into movement in virtual space. The range of

movements able to be interpreted and therefore represented in a virtual experience can be

categorised as: three degrees of freedom (3DoF) and six degrees of freedom (6DoF). 3DoF

refers to the pitch, yaw and roll of the head, rotational movements that can be interpreted by

internal motion sensors in an HMD. 6DoF expands on this to include the positional movements

of up/down, left/right and forwards/backwards. These positional movements are monitored by

tracking systems requiring external components or reference to external surroundings. From

a user's perspective, 3DoF allows the user to look around, whereas 6DoF allows the user to

move and look around. The six types of movement possible are visualised in Figure 2 below.

Figure 2. Diagram showing types of movement supported in 6DoF. Image credit: GregorDS, 2018,

https://en.wikipedia.org/wiki/Six_degrees_of_freedom#/media/File:6DOF.svg, CC BY-SA 4.0.

https://en.wikipedia.org/wiki/Six_degrees_of_freedom#/media/File:6DOF.svg

11

There are two technical approaches to implementing tracking systems known as inside-out

and outside-in tracking respectively. Inside-out tracking uses sensors placed on the HMD.

Outside-in tracking uses sensors mounted in the external environment. Both approaches may

utilise markers placed in the environment or on the HMD to improve tracking.

We have identified the following variable characteristics among tracking systems:

● Area. Flexibility in the tracked area can vary, including the maximum/minimum size

and shape limitations (e.g. to accommodate physical spaces without four straight

sides).

● Resolution. Systems can capture and transmit different densities of tracking data for

software processing.

● Latency. The time taken for tracking data to be processed and translated into

movement in virtual space. From the perspective of the user, this contributes to the

level of responsiveness when interacting with the virtual environment.

● Occlusion. The ability of the system to tolerate occlusion (i.e. blocking of a tracking

device or marker by a physical obstacle).

● Hand/finger tracking. The level of support for tracking movement in the hands or

fingers of the user. Hand and finger movement can then be represented in virtual space

as a means of increasing immersion within and interaction with the virtual environment.

● Eye tracking. Tracking systems can support tracking of the user's eye movement.

This information can be used in rendering techniques which increase performance, like

foveated rendering, or as a means of interacting with the virtual environment.

● Virtual boundary representation. Tracking systems use supporting software to

create a representation of the physical boundaries of the interactive area in virtual

space, to help to avoid problems like users colliding with their surroundings when

wearing an HMD. The way in which the software represents the boundary limits of the

interactive area to the user can vary (e.g. Oculus Guardian, Vive Chaperone).

2.1.3. Controllers

Controllers are physical devices which allow a user to interact with the virtual environment. A

VR system can use a hand-held video game controller, combining joysticks, buttons and pads,

and designed for screen-based gaming. VR hardware manufacturers have also experimented

with various forms of custom controller. These tend to prioritise freedom of arm movement

when compared to the typical form factor of a video game controller, which requires the two

hands of the user to be held in a fixed, relative position. In some cases these controllers may

be visibly represented inside the virtual environment to create a continuity between physical

sensation and visual perception of virtual space.

We have identified the following variable characteristics among controllers:

12

● Design. The form factor and layout of the device, particularly the way it is gripped,

creates a particular user experience (e.g. the Oculus Rift used trigger-type controllers,

while the Vive used wand-type controllers).

● Button/stick/pad configuration. The number and the types of interactable elements

on the controller allow for different levels of control to be configured.

● Haptics. Physical feedback in the controller (e.g. vibrations) can be created to respond

to events in the virtual environment, with the aim of increasing immersion.

● Virtual representation. A representation of the controller and/or player hands can be

created inside the virtual environment, with the aim of increasing immersion.

2.1.4. Computers

Computer systems orchestrate the execution of the software and its interaction with the VR

hardware. The high performance requirements of VR have tended to require the use of

powerful desktop PCs, including a dedicated graphics card (GPU). However, mobile

computing technology is also being used and may become increasingly popular as it becomes

more powerful. This has resulted in all-in-one HMD like the Oculus Quest (which relies on a

small computer built into the HMD itself12) and the GearVR, which is a HMD designed for

pairing with a Samsung mobile phone. While the exact computer hardware requirements of a

VR application can vary considerably depending on the rendering techniques used, they tend

to utilise a certain set of hardware components which are described in Table 1.

Name Description

Central Processing
Unit (CPU)

The CPU executes instructions contained in program code when an
application is run. For VR applications, this includes managing the rendering
of frames by sending jobs to the GPU and running physics simulations13.

Random Access
Memory (RAM)

RAM is volatile memory into which applications are loaded when they are
executed by the CPU. This is as important for VR applications as any other
software but is less likely to significantly impact performance compared to
the CPU or GPU.

Graphics
Processing Unit
(GPU)

The GPU is a specialised piece of hardware used in the rendering of 3D

graphics. GPUs can be found as dedicated expansion cards (as is frequently

the case for VR systems) or integrated into some CPUs.

Storage Devices Storage devices contain non-volatile memory used to store user programs
and data. SSDs provide faster speeds so are often favoured over traditional
magnetic HDDs for high performance applications such as VR.

Interfaces VR systems can use a large number of peripheral devices which must be
connected to the host machine, and so require the relevant interfaces to be
present. This typically includes multiple USB ports for tracking and sensor

12 Jad Meouchy, Oculus Quest Teardown, 2019, https://medium.com/badvr/oculus-quest-headset-

disassembly-2f404b004a3c
13 Google, VR Performance best practices, 2018, https://developers.google.com/vr/develop/best-

practices/perf-best-practices.

https://medium.com/badvr/oculus-quest-headset-disassembly-2f404b004a3c
https://medium.com/badvr/oculus-quest-headset-disassembly-2f404b004a3c
https://developers.google.com/vr/develop/best-practices/perf-best-practices
https://developers.google.com/vr/develop/best-practices/perf-best-practices

13

data and HDMI/DisplayPort connections for sending frames to the HMD and
a monitor.

Table 1. Key components of a desktop computer suitable for running VR applications.

As a result of the large range of components available with which to construct computer

systems and their complex interactions, understanding the variance they introduce to VR

systems is beyond the scope of our research. However, we can make two broad

generalisations about the significance of computer hardware. The first is that the primary

purpose of hardware selection when creating a system to support a VR application is

performance. Each component can be critical in lowering latency and increasing the speed

with which frames are generated, both of which are important factors in creating a comfortable

experience for a user. The second is that the GPU is of primary importance within this

constellation of components, given its critical role in the processing of shaders and the creation

of the frames sent to the HMD. Different GPU models, in combination with the specific driver

versions installed, support different rendering features. For example, to use features of DirectX

11, the GPU and driver combination must support DirectX 11.

2.2. VR System Software

VR systems depend on several layers of software which operate in conjunction with hardware.

These layers are illustrated in Figure 3 below.

Figure 3. Diagram of components found in a generic VR software environment.

14

The software components of a VR system center on the VR application itself, the execution of

which engages these other layers. VR applications are not discussed in this section but are

covered in detail in Sections 3 (for Real-Time 3D) and 4 (for 360 Video). This section instead

focuses on understanding the variance introduced by the other third-party software layers on

which a VR application depends. Software dependencies arise through design decisions

during the development process, usually because of the choice to target a specific set of

hardware. The generic core components of software environments used to run VR

applications are summarised in Table 2 below and discussed further in the subsequent

sections.

Name Description Examples

Operating System Supports a computer's general
operation, including managing
interactions between software and
hardware.

Windows, Mac OS, Linux

3D API

Abstraction layer used by software to

access the features of graphics

hardware. Typically packaged with an

OS e.g. DirectX is a core component of

Windows, while Metal is a core

component of MacOS.

Vulkan, DirectX, OpenGL, Metal

VR Runtime

Provides software with access to VR
hardware (such as HMDs and tracking
systems) and implements certain
rendering features (e.g. lens distortion).

Oculus, OpenVR (Vive/SteamVR),

Windows Mixed Reality

Device Drivers

Controls a connected hardware device.

For consumer oriented VR products,

device drivers are typically bundled with

and managed by the VR runtime.

GPU/display, HMD, controllers,

positional tracking system

Additional Libraries Any additional libraries required to run
the application which are not found in
the operating system or VR runtime.

.NET/Mono runtimes, MSVC++

runtimes

Table 2. Description of the core components of a generic VR system with real-world examples of

each technology.

Comments by the artists and makers we spoke to indicate that the management of software

environment components is a significant challenge when working with VR. These

environments are made particularly volatile by the tendency for VR runtime software to

integrate automatic software updates. Several of the artists we spoke to commented that these

updates made maintaining access to specific versions of their software challenging by

breaking dependencies. In some cases, they had resorted to creating dedicated offline

systems to ensure they remain static snapshots of the software environment. It is clear that if

we hope to preserve and manage such an environment, particularly if we hope to effectively

apply strategies such as emulation, we need to ensure we archive snapshots of working

software environments. We recommend that the storage volumes containing software

15

environments for artist-verified systems be captured using disk imaging for preservation

purposes — a topic we discuss in more detail in 5.1. Acquiring VR Artworks.

2.2.1. VR Runtimes

A VR runtime is a software package which orchestrates communication between application

software and VR hardware. VR runtimes are typically closely linked to the manufacturer of VR

hardware. A brief summary of actively developed VR runtimes can be found in Table 3 below.

Name Description Target Platforms

SteamVR Originally created for Valve’s own Vive VR hardware,

it has since expanded to include support for other VR

systems. Implements Valve’s own OpenVR14

specification, but is not itself open source15.

Windows, Linux,

MacOS (beta only)

Oculus Oculus’s runtime for their Rift VR systems. Note:
Oculus Go has the mobile version of the runtime
installed on the HMDs embedded hardware.

Windows, MacOS,
Linux

Open Source Virtual

Reality (OSVR)

An open-source VR runtime intending to add support
for all major VR hardware. It’s future is uncertain, as
commits to their GitHub repository have been
infrequent since 2017. The main contributor, Ryan A.
Pavlik, is now working on the OpenXR specification.

Windows, Android,
Linux (partial
support), Mac OS X

Daydream /

Cardboard

Google’s mobile-only platform for VR. Uses ‘Google
VR Services’ on supported Android versions and
phones.

Android

GearVR A mobile-focused VR HMD kit developed by
Samsung, which requires the use of a compatible
Samsung Galaxy mobile phone.

Android

Windows Mixed

Reality

Supports a variety of Windows Mixed Reality HMDs
and the HoloLens HMDs. Has OpenXR support.

Windows

PSVR A VR system for Sony’s Playstation 4. Requires a
licence to develop for — no public SDK/engine/tools.

Playstation 4

ARKit Apple’s augmented reality (AR) platform. The runtime
is integrated into iOS 11 onward and supports
hardware.

iOS

ARCore Google’s mobile-only augmented reality (AR)
platform. Uses ‘Google Play Services for AR’ on
supported Android versions and phones.

Android

14 More information about OpenVR can be found in this article: Matias Nassi, Introduction to OpenVR

101 Series: What is OpenVR and how to get started with its APIs, 2018,
https://skarredghost.com/2018/03/15/introduction-to-openvr-101-series-what-is-openvr-and-how-to-
get-started-with-its-apis/
15 See discussion on OpenVR’s GitHub repository:

https://github.com/ValveSoftware/openvr/issues/154

https://skarredghost.com/2018/03/15/introduction-to-openvr-101-series-what-is-openvr-and-how-to-get-started-with-its-apis/
https://skarredghost.com/2018/03/15/introduction-to-openvr-101-series-what-is-openvr-and-how-to-get-started-with-its-apis/
https://github.com/ValveSoftware/openvr/issues/154

16

Monado A Linux runtime implementing the OpenXR
specification in development by Collabora.

Linux

Table 3. Description of VR runtimes still in active development at time of writing.

From a user perspective, using a VR runtime typically involves using an executable installer

provided by the manufacturer of the VR hardware used. This installer carries out the download,

installation and configuration of up-to-date versions of necessary libraries, drivers and

applications (such as device management and calibration GUIs). From a preservation

perspective, the behind-the-scenes nature of this installation process, in addition to the

frequency of updates, makes collecting and archiving specific runtime versions challenging.

The only way we have identified to ensure all elements of a runtime are captured is to carry

out imaging of the entire software environment (see 5.1. Acquiring VR Artworks).

We identified a number of roles that the VR runtime plays in the process of running a VR

application. One role is to prepare frames to be sent to the HMD. As HMDs contain thick lenses

in front of the panels to maximise the field of view at close viewing distance, frames sent to

the HMD must be pre-distorted to compensate for distortion these lenses introduce.

Techniques can be used to improve the quality of the distorted image. Supersampling (i.e.

rendering at a higher resolution and downscaling) can be used to further compensate for the

loss of pixel data in the outer edges of the rendered frame as a result of the distortion

correction process. Lens matched shading increases resolution consistency by rendering an

image which more closely matches the distorted images sent to the HMD16. Lens distortion

processes are typically handled by a VR runtime specific to the HMD manufacturer and will

use a distortion algorithm specific to the lens shape in the HMD which may not be made public.

This can create a strong dependency relationship between a VR application and a

manufacturer's runtime. Techniques have been developed to derive distortion algorithms

manually using photography17. The VR runtime also manages the tracking system and

supports a visual representation of a boundary at the limits of safe physical space. This and

other features can be configured and calibrated by the user via a management application.

Additional proprietary techniques can be implemented by the VR runtime to improve rendering

performance. Reprojection techniques (sometimes known by terms such as timewarp and

spacewarp) are used by the current generation of VR runtimes to artificially increase framerate

when a host system is unable to generate frames at the rate required to avoid discomfort in

VR18. These techniques generate extra frames by distorting the previously rendered frame

based on the movement of the user and the scene, offering a very efficient way to generate

additional frames. As these techniques are used simply to achieve higher framerates, and are

not apparent to the user, they do not seem to be an important characteristic of VR runtimes

from a preservation perspective. They could potentially be replaced by other software

providing similar functionality or may simply become unnecessary over time due to advances

in computer power. However, they could remain relevant in emulation, where an original

16 NVIDIA, VRWorks - Lens Matched Shading, n.d.,

https://developer.nvidia.com/vrworks/graphics/lensmatchedshading.
17 OpenHMD, Universal Distortion Shader, 2017,

https://github.com/OpenHMD/OpenHMD/wiki/Universal-Distortion-Shader.
18 David Heaney, VR Timewarp, Spacewarp, Reprojection, And Motion Smoothing Explained, 2019,

https://uploadvr.com/reprojection-explained/.

https://developer.nvidia.com/vrworks/graphics/lensmatchedshading
https://github.com/OpenHMD/OpenHMD/wiki/Universal-Distortion-Shader
https://uploadvr.com/reprojection-explained/

17

software environment would still be used and artificially increasing frame rates may still be a

concern.

VR runtimes are a source of concern in the preservation of VR artworks due to their

proprietary, hardware-specific nature and critical role in providing applications with access to

that hardware. Without the installation of an appropriate runtime on the host computer system,

VR hardware may function in a limited way (e.g. without appropriate lens distortion correction)

or not at all. Adding a further layer of complexity, the VR application must also have support

for the runtime built in. Adding support for a specific VR runtime to a VR application requires

adding support for the appropriate API during development. In the Unity and Unreal Engine 4

game engines, discussed further in 3.1. Real-Time 3D VR Production Materials, this involves

installing or enabling certain plugins or SDKs. From the perspective of an artist who wants to

utilise a specific set of VR hardware, the use of hardware-specific runtimes means that they

must build this support into their application during development, or it will not be available to

the packaged application. This may greatly restrict the use of other VR hardware in the future

with that application, without modifying the source project.

The development and adoption of open VR runtime standards may help alleviate this problem.

An open-specification runtime standard has been developed by the Khronos Group called

OpenXR19, which aims to standardise the connections between VR applications and VR

runtimes, and VR runtimes and VR hardware (see Figure 4 below). These are considered

distinct goals, thus allowing manufacturer-specific VR runtimes a continued place within the

VR software ecosystem, providing they can speak the language of OpenXR.

Figure 4. Diagram of current XR market fragmentation (left) and interoperability hoped to be created

by OpenXR standard (right). Image credit: Khronos Group, 2019.

Adoption of such a standard by hardware manufacturers would be advantageous to artists, as

it would allow them to support a range of hardware with just one plugin. It would also be

advantageous from a preservation standpoint by opening up more options for hardware

19 Khrono Group, OpenXR Overview, n.d., https://www.khronos.org/openxr.

https://www.khronos.org/openxr

18

migration and other interventions — topics we discuss further in 5.5. Code Migration and

Related Approaches. The OpenXR 1.0 specification was released in July 2019, and currently

has several public runtime implementations including Oculus20 (runtime v19 or later),

Monado21 for Linux (which is open source) and Windows Mixed Reality22. On the engine side,

support has been added to Unreal Engine since version 4.23 through an OpenXR plugin, while

Unity has plans to support OpenXR23.

2.2.2. Operating Systems

An operating system (OS), as for other kinds of software application, is responsible for

managing the execution of a VR application and software access to hardware. It may also

provide access to generic libraries and drivers (e.g. for audio and bluetooth devices) required

by some VR hardware and software. As a result of the necessary use of such components,

VR applications are typically built to support a particular OS and will not function on others

unless recompiled from the source project. For VR applications we identified two particularly

important components which are provided by the OS. The first is the implementation of a 3D

API, which is called upon by a VR application to render 3D graphics. OS level support for 3D

APIs is summarised in 2.2.3. 3D APIs. The second is supporting direct mode access to VR

hardware, which considerably improves user experience when setting up an HMD. This is

discussed further in 2.2.4. VR Device Drivers.

2.2.3. 3D APIs

3D Application Programming Interfaces (APIs) are an abstraction layer used to provide

applications with access to functionality related to rendering 3D graphics. They are typically

implemented in part by the operating system and in part by the GPU driver software, both of

which must be present for an application to be able to use that particular API with that GPU

hardware. 3D APIs are a ubiquitous component of modern VR development and real-time 3D

development more generally. An application must be built to support a particular 3D API. A list

of currently maintained 3D APIs can be found in Table 4.

3D API Operating System
Implementations

Description

Direct3D Windows 10, Linux
(limited support via
Wine)

Proprietary API that has been part of Windows
OS’s since Windows 95, as part of DirectX.
Support on other platforms is limited to Wine’s
implementation for Linux which is not complete.

OpenGL Windows 10, MacOS
(deprecated in

Open standard for 3D APIs implemented on
many platforms (and on mobile through the

20 Oculus, OpenXR Support for PC Development, web page, n.d.

https://developer.oculus.com/documentation/native/pc/dg-openxr/.
21 Monado, Monado - XR Runtime (XRT), n.d., https://monado.freedesktop.org/.
22 Sean Endicott, OpenXR now available on the Microsoft Store for Windows Mixed Reality, 2019,

https://www.windowscentral.com/openxr-now-available-microsoft-store-windows-mixed-reality.
23 mfuad, Unity’s plans for OpenXR, 2018, https://forum.unity.com/threads/unitys-plans-for-

openxr.993225/.

https://developer.oculus.com/documentation/native/pc/dg-openxr/
https://monado.freedesktop.org/
https://www.windowscentral.com/openxr-now-available-microsoft-store-windows-mixed-reality
https://forum.unity.com/threads/unitys-plans-for-openxr.993225/
https://forum.unity.com/threads/unitys-plans-for-openxr.993225/

19

10.14), Linux OpenGL ES variant). Developed and maintained
by Khronos Group.

OpenGL for Embedded
Systems / OpenGL ES

Windows, Linux,
Android

Open standard for 3D APIs on embedded
devices and portables such as mobile phones.
Developed and maintained by Khronos Group.

Metal MacOS Apple’s low-level 3D API intended as a
competitor to Direct3D 12 and Vulkan.

Vulkan Windows 10, Linux Successor to OpenGL developed by the Khronos
Group, this open standard is a low-level API
designed to compete with Direct3D 12 and
Metal.

Table 4. List of currently maintained 3D APIs and the operating systems they have been implemented

on.

In their core features, the current generation of 3D APIs described in Table 4 are relatively

similar24. This is reflected in the ability of modern real-time 3D engines to target a variety of

APIs when building applications. Indeed, in current versions of Unreal Engine and Unity,

applications can be built to support any of the APIs listed in Table 4. For Unity, the separation

of the custom application content and the Unity player component means that an application

can be executed using any of the APIs supported by the standard player component — the

choice of API to use is then automatically chosen based on availability or controlled using

launch options.

Despite similarity in core features, there remains the potential for the choice of 3D API to

introduce variability in rendering characteristics. For example, the real-time ray tracing

rendering technique is currently supported only in Microsoft’s DirectX version 1225 and

Vulkan26. The choice of API is also significant in terms of the potential loss of API support from

future GPU driver and operating system updates. There are indications that changes of this

kind happen in practice, a notable example being Apple’s choice to deprecate the use of

OpenGL 3D rendering API on MacOS in favour of their own Metal API27. There are also

historical examples of APIs becoming obsolete, such as the Glide API created by the graphics

card manufacturer 3dfx and widely used in the late 1990s, but eventually being superseded

by Direct3D and OpenGL28. Ensuring support for open standards (such as OpenGL and

Vulkan) as opposed to proprietary, platform-specific APIs (such as Direct3D and Metal) when

building VR applications may lower the risk of losing access through obsolescence, as an

open specification makes writing compatibility software more practical. 3D APIs, being a

combined product of operating system and GPU drivers, are made available to an application

by ensuring compatible versions of these two components are present.

24 Alain Galvan, A Comparison of Modern Graphics APIs, 2020, https://alain.xyz/blog/comparison-of-

modern-graphics-apis.
25 Shawn Hargreaves, Announcing DirectX 12 Ultimate, 2020,

https://devblogs.microsoft.com/directx/announcing-directx-12-ultimate/.
26 Khronos Group, Ray Tracing In Vulkan, 2020, https://www.khronos.org/blog/ray-tracing-in-vulkan.
27 Samuel Axon, The end of OpenGL support, plus other updates Apple didn’t share at the keynote,

2018, https://arstechnica.com/gadgets/2018/06/the-end-of-opengl-support-other-updates-apple-didnt-
share-at-the-keynote/.
28 Tony Smith, 3dfx open sources Glide, Voodoo 2 and 3 specs, 1999,

https://www.theregister.com/1999/12/07/3dfx_open_sources_glide_voodoo/.

https://alain.xyz/blog/comparison-of-modern-graphics-apis
https://alain.xyz/blog/comparison-of-modern-graphics-apis
https://devblogs.microsoft.com/directx/announcing-directx-12-ultimate/
https://www.khronos.org/blog/ray-tracing-in-vulkan
https://arstechnica.com/gadgets/2018/06/the-end-of-opengl-support-other-updates-apple-didnt-share-at-the-keynote/
https://arstechnica.com/gadgets/2018/06/the-end-of-opengl-support-other-updates-apple-didnt-share-at-the-keynote/
https://www.theregister.com/1999/12/07/3dfx_open_sources_glide_voodoo/

20

2.2.4. VR Device Drivers

VR device drivers are specialised software programs which communicate with hardware

devices. All VR hardware devices require a suitable driver to be present in order to function,

whether it be manufacturer-supplied or a generic driver packaged with the OS. There is limited

information available about the role of these drivers, which for most consumer-oriented VR

hardware (as typically used by artists) are proprietary and closed-source. What we do know

is largely a result of the efforts of the open source community to create open-source drivers,

such as OpenHMD29, libsurvive30 and Monado31. These projects have demonstrated that many

core elements of manufacturer supplied driver functionality can be reimplemented in open-

source software and their documentation is a useful resource for learning more about VR

hardware drivers. One important feature of device drivers is management of access to the

HMD. Since the arrival of consumer-oriented VR HMDs (namely the Oculus Rift CV1 and HTC

Vive), HMD drivers implement a feature known as direct mode. This allows an application to

treat an HMD as a dedicated and distinct display device, rather than as an additional monitor

which would extend the desktop32. The latter is known as extended mode, and is now rarely

used due to the amount of configuration required and the improved user experience provided

by direct mode. At time of writing, extended mode remains accessible in current versions of

SteamVR but has been removed from the Oculus runtime.

From a user perspective, there is little distinction in the installation and configuration process

between VR device drivers and the VR runtime, which carries out this process behind-the-

scenes. From examination of SteamVR on Windows, we observed that it uses both installed

system drivers, managed by the OS, and DLL drivers which are loaded and managed by the

runtime. These factors make extracting drivers for storage independent of a runtime

environment impractical. As for other components of the software environment, they are likely

to be best preserved as part of a captured disk image (see 5.1. Acquiring VR Artworks).

2.2.5. GPU Drivers

GPU drivers allow software to interact with specialised graphics processing hardware known

as a Graphics Processing Unit (GPU) or graphics card. Beyond supporting 3D rendering

capabilities, GPU drivers implement device-specific support for direct mode VR (for example,

NVIDIA added support for Oculus direct mode in 355.83, HTC Vive direct mode in 361.75 and

Windows Mixed Reality in 387). Drivers also form a part of the implementation of different 3D

APIs. The importance of the GPU driver is a concern for long-term preservation, as making

changes to GPU hardware will likely necessitate a change to the GPU driver, potentially

resulting in loss of access to rendering features, VR direct mode and 3D APIs.

29 OpenHMD, web page, n.d., http://www.openhmd.net/.
30 libsurvive, GitHub repository, 2020, https://github.com/cntools/libsurvive.
31 Monado, Monado - XR Runtime (XRT), n.d., https://monado.freedesktop.org/.
32 Monado, What is Direct Mode, n.d.,https://monado.freedesktop.org/direct-mode.html.

http://www.openhmd.net/
https://github.com/cntools/libsurvive
https://monado.freedesktop.org/
https://monado.freedesktop.org/direct-mode.html

21

3. Real-Time 3D VR

Real-time 3D (RT3D) is the use of software to dynamically generate a moving image from 3D

data. In contrast to pre-rendered 3D, which uses similar data sources, the real-time nature of

the process means that the moving image sequence can be dynamic and respond to user

interaction. This technology has been used extensively in the video game industry and has

found use in contemporary art — there are five artworks in the Tate collection which use RT3D.

Alongside 360 video, RT3D is one of two main approaches that can be taken to producing VR

content. RT3D VR can be considered an extension of real-time 3D rendering, as applications

are built using the same tools and underlying principles. RT3D VR content produced by artists

is ultimately compiled as a software application, a package of code and data which is

executable on a suitable computer system.

In order to understand how to preserve RT3D VR applications, we need to understand how

they are created and how they function. In this section, we will start by introducing the

production process for real-time 3D applications, with a focus on the engine-based approach

taken by the artists we interviewed. Given evidence supporting the value of source materials

in the conservation of software-based art33,34, we will also consider the practical implications

of collecting production materials associated with VR applications. In the next section, we will

examine the compiled software applications (sometimes known as builds) which are the

primary output of the production process. In the final section, we will explore approaches to

the creation of conservation documentation for real-time 3D VR applications.

3.1. Real-Time 3D VR Production Materials

The process of producing RT3D VR artworks involves bringing together an array of assets —

various data types including 3D models, textures and audio — in a 3D engine. A 3D engine is

a development environment for creating real-time 3D content, which can then be exported (or

built) as an executable application. This section examines the production process in further

detail, and identifies the key software tools and data sources involved.

3.1.1. Engines and Project Files

Real-time 3D engines are development environments for creating real-time 3D software. They

can integrate a broad range of features useful in constructing 3D environments and typically

have a graphical user interface (GUI) built around the manipulation of 3D scenes through a

viewport (see Figure 5). Features included in a contemporary game engine may include:

33 Deena Engel and Glenn Wharton, Reading between the Lines: Source Code Documentation as a

Conservation Strategy for Software-Based Art, Studies in Conservation 59 (6): 404–15, 2014,
https://doi.org/10.1179/2047058413Y.0000000115.
34 Mark Hellar and Deena Engel, Computational Provenance and Computational Reproducibility: What

Can We Learn about the Conservation of Software Art from Current Research in the Sciences?,
Electronic Media Review 4, 2015,
https://resources.culturalheritage.org/emg-review/volume-4-2015-2016/engel-hellar/.

https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
https://resources.culturalheritage.org/emg-review/volume-4-2015-2016/engel-hellar/

22

● Renderer: Generates animated 3D graphics in real-time from the assembled data

sources (geometry, materials, lighting and particle systems etc.).

● Shader management: Enables authoring of shaders (small rendering programs which

run on the GPU) and translation35 into 3D API specific languages such as HLSL

(Direct3D), GLSL (OpenGL) and SPIR-V (Vulkan)

● Scripting: Allows creation of dynamic or interactive behaviours using programming

languages or equivalent interfaces (e.g. the Blueprints graph editor in Unreal Engine

4).

● Physics simulation: Simulates an approximation of physical systems and the

resulting interaction between geometry components.

● Audio engine: Allows playback and manipulation of audio, including positional and

spatial components.

● Asset management: System for the import, export and organisation of assets such

as textures, 3D models and audio files.

● Cross-platform build support: Allows compilation of projects to binaries for different

platforms, including various operating systems, 3D APIs and VR runtimes.

Much like VR systems, real-time 3D engines have been developed primarily in the context of

video game production. The use of third-party engines is advantageous because many core

features of an engine can be reused: there is little value to engaging in the lengthy process of

implementing a 3D renderer or physics engine when an existing implementation can meet

your requirements and allow focus on the more creative elements of the production process.

Figure 5. A screenshot of a simple 3D scene in the Unreal Engine 4.22 editor software.

35 Where compilation or interpretation of shader code is handled by the GPU at runtime.

23

The GUI-based editors (see Figure 5) distributed with engines lower the barriers to entry,

allowing those without a background in 3D rendering techniques and programming to develop

real-time 3D software. These factors make third-party engines particularly appealing to artists

— the six that we spoke during this research worked exclusively with the third-party engines

Unity and Unreal Engine 4.

While larger game studios might develop their own engine, many will licence a third-party

engine such as the aforementioned Unity and Unreal Engine 4 (UE4)36. Unity and UE4 are

both free to use software packages which employ revenue-based licensing models. Unity uses

a tiered subscription model which requires users with revenue or funding of over $100,000

over the past 12 months to buy a paid plan, which rises in cost in several further tiers based

on higher revenue levels37. UE4 uses a licencing model which requires users to pay a 5%

royalty to Epic Games if their product is monetised and revenues exceed $1,000,000 USD38.

Although they weren’t used by the artists we spoke to, there are alternative RT3D development

tools available under open-source, permissive licenses, including the engine Godot39 and web

frameworks A-Frame40 and Three.js41.

Applications are developed in engines as projects: collections of data and code arranged in a

well-defined folder structure. Encouraging the preservation of the source projects of real-time

3D applications seems a logical approach to their long-term preservation, as these are

analogous to source code. Retaining these opens up options of modification and migration in

order to keep the software running in future technical environments (see 5.5. Code Migration

and Related Approaches). The Unity and Unreal Engine 4 engine project formats exist within

a single directory, which can be archived as-is to capture the hierarchy of assets, levels and

other materials. However, they remain contingent on the appropriate version of the engine

binaries for access — opening them in another version may cause damage to the project,

failure to compile or other compatibility issues.

Reliance on engine binaries presents several challenges for ongoing access to engine

projects:

● Engines are typically managed by installer applications which conceal details of the

installation and configuration process.

● Engine projects may also have additional dependencies on third-party pieces of

software in order to build for certain platforms (e.g. Google’s Android SDK must be

installed to create Android builds) or on plugins.

● Engine updates are relatively frequent and there is a tendency to remove access to

old engine binaries over time. For example, an average of four major versions of Unreal

36 Limited data is available to make meaningful estimates as to how many, but this survey of data

about games on the Steam distribution platform provides some indication:
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engi
nes_on/.
37 Unity, Compare Unity plans, 2021, https://store.unity.com/compare-plans.
38 Unreal Engine, Frequently Asked Questions, 2021, https://www.unrealengine.com/en-US/faq.
39 Godot Engine, web page, 2021, https://godotengine.org/.
40 A-Frame, web page, 2021, https://aframe.io/.
41 Three.js, web page, 2021, https://threejs.org/.

https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://store.unity.com/compare-plans
https://www.unrealengine.com/en-US/faq
https://godotengine.org/
https://aframe.io/
https://threejs.org/

24

Engine have been released every year since 2014. At the time of writing versions of

Unreal Engine binaries prior to version 4.0.2 (released 28 March 2014) are no longer

publicly accessible, while accessible Unity binaries extend back as far as version 3.4.0

(released 26 July 2011).

It is worth noting that even if a source project is archived with suitable engine binaries, without

archiving complete engine source code we have only a partial representation of the software.

Both UE4 and Unity have accessible source code repositories but in neither case is the full

source code made available under an open-source licence. A partial C# component of the

Unity source code is publicly accessible on GitHub but does not allow modification or

redistribution42. Full source access and modification rights are only available with a higher tier

paid subscription and an individually negotiated source access agreement. The full UE4

source code can be read and modified by anyone agreeing to the Unreal Engine EULA43 but

not redistributed in source code form.

3.1.2. Scenes and Assets

The term asset is used to describe a unit of data which is imported into or created in a game

engine, and used in the construction of a virtual scene (also known as a level, map or

scenegraph). Assets can include a huge range of file types, including meshes (3D geometry),

textures, materials, particle systems and audio. The creation of assets may involve various

specialised workflows and tools outside the engine, from which a suitable interchange format

is exported and used to import them into the engine. Based on examination of source projects

during this research, files appear to retain their original format when imported into Unity but

are converted to a native format when imported into Unreal Engine 4. We have not been able

to locate public documentation of the latter format. The variety of asset types is such that we

limited the scope of our research and the following discussion to examining the most unique

of these to 3D rendering: the 3D model. In this section we will discuss what constitutes an

engine-ready 3D model, which we define as a virtual representation of an object, and identify

common file formats used.

At its most basic, a 3D model is a set of point coordinates or vertices44, which describe the

structure of the surface of a 3D object, known as a mesh. Each vertex can have properties,

such as a normal, which describes the direction it is facing (i.e. the outside of the surface),

and also include UV map coordinates which describe how textures are projected over the

model's surface. A 3D model can also be associated with descriptions of its surface properties,

known as materials, which are used by the engine to light and render it. Historically this might

have been as simple as a square raster image tiled over the surface of the model to describe

its colour, but in modern 3D rendering can include many layers of information that are used to

achieve physically accurate results when the surface is lit. This information is typically

represented using texture maps, raster images which contain information describing a

particular property such as how rough or smooth a surface is. This approach to creating

42 Aras Pranckevičius, Releasing the Unity C# source code, 2018,

https://blogs.unity3d.com/2018/03/26/releasing-the-unity-c-source-code/.
43 Unreal Engine, Unreal Engine End User License Agreement For Creators, 2021,

https://www.unrealengine.com/en-US/eula/creators.
44 The singular form of vertices is vertex.

https://blogs.unity3d.com/2018/03/26/releasing-the-unity-c-source-code/
https://www.unrealengine.com/en-US/eula/creators

25

materials is known as physically-based rendering (PBR) and uses texture maps describing

color (also known as a diffuse or albedo map), surface detail (known as normal maps),

shadowing (ambient occlusion maps), roughness (or in some workflows glossiness),

metallicness and specularity.

Figure 6. These four texture maps have been used to apply a PBR material to a mesh in the 3D

modelling software Blender 2.8. Material textures downloaded from freepbr.com.

In combination, these maps allow the renderer to infer how light would bounce off that surface,

and thus determine how to colour the pixels that represent that surface for a particular frame.

Depending on the file format and workflow adopted, materials might be packaged with the

geometry data or included as a sidecar file.

There is an array of tools available to create engine-ready 3D models, with popular tools that

we encountered including 3D Studio Max, Blender (the primary free and open source option

in this domain), Houdini (which is specialised in procedural animation), Maya and ZBrush

(which is specialised in sculpting). In addition to their own native formats, these tools are

capable of importing and exporting 3D models in a variety of file formats in order to

accommodate varied production workflows. Additional tools may be used in texturing

workflows beyond widely used raster graphics editing tools like Photoshop and GIMP, such

as the Substance toolset which is used for the creation of PBR materials. A 3D model suitable

for usage in real-time 3D applications, particularly in an VR context, may be heavily optimised

in order to improve performance. This typically involves reducing the complexity of geometry

and lowering the resolution of texture maps.

Given the relative novelty of 3D model file formats as a digital preservation research topic, we

are not yet at a stage where community consensus of preservation suitable formats has been

26

reached, and a detailed comparison in the context of our research was beyond the scope of

this project. The best resource at time of writing is the Library of Congress’ ‘Sustainability of

Digital Formats’ website45, which includes a number of in-depth 3D file formats as part of an

ongoing programme of reviews. Fragmentation in requirements from different user groups,

and formats favoured by particular tools, means that 3D model formats are heterogenous and

often domain specific. The more generic formats with support across many applications — of

which FBX, a proprietary format owned by Autodesk, is particularly favoured in real-time 3D

production — are so-called interchange formats, which often contain only partial

representations of the content created in the authoring tool and require a degree of processing

and configuration when imported into another tool. While there have been efforts to introduce

open standards for 3D model file formats (for example, the COLLADA, U3D and X3D formats),

adoption of these has been poor, perhaps due to the inherent challenge of keeping up with

the fast-moving nature of the 3D graphics industry.

In Table 5 below we offer a brief summary of selected file formats, which we identified as

noteworthy during our research by their matching one or more of two criteria: 1) those that are

frequently used in real-time 3D rendering applications and 2) those which are open standards.

For each we give a brief description of the format, some preliminary notes on issues relating

to their suitability for long-term preservation and, where applicable, point to their review in the

Library of Congress’ ‘Sustainability of Digital Formats’ resource.

Format Description Preservation Notes

Wavefront
OBJ/MTL

OBJ is a simple interchange format
for 3D geometry. An OBJ file can be
accompanied by an MTL file
describing material properties.

While the most feature limited of the
formats listed here (e.g. no support for
animation), OBJ has a track record of
long-term support across many
applications. While the specification is
public the licence it is released under is
unclear and may be proprietary.

LoC sustainability review:
https://www.loc.gov/preservation/digit
al/formats/fdd/fdd000507.shtml

FBX FBX is a proprietary format
maintained by Autodesk and widely
used as a 3D model interchange
format in real-time 3D rendering
applications.

Widely adopted in real-time 3D engine
workflows. The binary format has been
partially reverse engineered by Blender
Foundation for their own import/export
tools, but its proprietary nature remains a
concern for long-term preservation.

X3D

X3D is a royalty-free open standard
which can represent 3D objects and
scenes. The format is an ISO
standard and has been in
development by the Web3D
consortium since the early 2000s.

The format is not widely used in RT3D
applications (neither Unity nor Unreal
Engine 4 include X3D importers).
Release of new versions of the
specification is infrequent (the last
ratified version, 3.3, was released in
2015) which means its features are out
of step with those of other formats such

45 Library of Congress, Sustainability of Digital Formats: Planning for Library of Congress Collections,

2021, https://www.loc.gov/preservation/digital/formats/.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml
https://www.loc.gov/preservation/digital/formats/

27

as FBX and glTF46.

LoC sustainability review:
https://www.loc.gov/preservation/digit
al/formats/fdd/fdd000490.shtml

glTF

glTF is a royalty-free open standard
designed for the efficient transmission
of 3D models and scenes. It is
maintained by the Khronos Group.

Primarily aimed at the web, adoption for
real-time 3D applications seems likely if
web-based RT3D continues to gain
popularity. Tools supporting
import/export are currently limited
however. Monitoring will be required
given priorities regarding transmission
efficiency and the potential for
introduction of lossy compression
features (e.g. Draco47).

LoC sustainability review:
http://www.loc.gov/preservation/digita
l/formats/fdd/fdd000498.shtml

Alembic

The Alembic (.abc) format is a royalty-

free open standard used to store

complex animated 3D geometry. It is

maintained by Sony Pictures

Imageworks and Industrial Light &

Magic.

This format is widely used in RT3D
rendering and importing is natively
supported in both Unity and Unreal
Engine 4. As it only includes only the
‘baked’ animation, it is not lossless with
the respect to complex rendergraph
present in source projects (e.g. in
Houdini).

Universal
Scene
Description
(USD)

A royalty-free open-standard
designed as an interchange format for
complete 3D scenes composed of
many elements. Maintained by Pixar.

Extent of adoption in RT3D is not known,
but both Unreal Engine 4 and Unity
support import of USD scenes.

Table 5. Summary of RT3D relevant 3D file formats identified during our research.

3.2. Real-Time 3D VR Applications

RT3D VR applications (or builds) are the software that results from the development process

described above, and is then used in the display of RT3D VR artworks. These applications

are dependent on the software and hardware layers of a VR system, as described in 2. VR

Systems. In this section, we discuss what constitutes a RT3D VR application and consider

how they might be acquired.

3.2.1. Application Packages

An application is produced from a 3D engine project (see 3.1.1. Engines and Project Files)

and usually contains a combination of executable code and packaged data arranged in a well-

defined directory structure. In most cases this will be the primary media used in the display of

46 Leonard Daly, glTF/X3D Comparison, n.d., https://realism.com/blog/gltf-x3d-comparison.
47 Draco, GitHub repository, 2021, https://github.com/google/draco.

https://www.loc.gov/preservation/digital/formats/fdd/fdd000490.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000490.shtml
http://www.loc.gov/preservation/digital/formats/fdd/fdd000498.shtml
http://www.loc.gov/preservation/digital/formats/fdd/fdd000498.shtml
https://realism.com/blog/gltf-x3d-comparison
https://github.com/google/draco

28

the work and can be seen as analogous to a master. A RT3D VR application (excluding one

targeting WebGL — see notes below) will generally consist of:

● One or more executable files (e.g. Windows Portable Executable on Windows, Mach-

O on MacOS).

● Additional runtime libraries (e.g. Mono Runtime for Unity or the Ogg Vorbis audio

decoder library).

● Data files containing packaged assets (e.g. .pak files in Unreal Engine 4 and .resource

files in Unity)

The code component of the executable files is machine code compiled for the target platform,

in order to maximise performance. Despite commonalities among CPU architectures on

contemporary computing platforms (Windows, MacOS and Linux all utilise the x86-64

architecture), this low-level code remains platform specific due to the use of system calls and

other OS-specific references. Modern game engines, including Unity and Unreal Engine 4,

allow cross-compiling for the creation of builds for different target platforms (e.g. Windows,

MacOS, Linux, Android) from the same source project. While a build can only support one

platform, it can support multiple 3D APIs and VR runtimes, providing these are supported by

that host platform. Support for these will depend on the engine version and plugins in use

when the application is built.

RT3D applications built for the web use a different set of technologies from the standalone

application builds described above, so that they can be run in a web browser. The artists we

worked with during our research were not using these technologies, so our coverage of this

area of RT3D VR is limited to a very broad overview. Web RT3D applications are built as code

which can be executed by a web browser at runtime, such as JavaScript or WebAssembly,

and use the WebGL 3D API instead of desktop APIs such as OpenGL and DirectX. The

application package itself is also divergent from native RT3D builds in that its structure more

closely resembles a website. Assets are typically not packaged and are instead stored in web-

friendly file formats such as OBJ and glTF, while code is stored in a human-readable format

rather than a binary format (excluding WebAssembly code).

3.2.2. Executing an Application

Executing a RT3D VR application engages the layers of hardware and software described in

2. VR Systems. The specification and features of these components can impact the

characteristics of the VR experience in various ways such as frame rate, latency and image

quality. In Table 6 below we briefly describe some of the key points of variability we have

identified alongside notes on approaches to recording them. Monitoring these characteristics

particularly could be useful in identifying problems with VR application performance or when

assessing the impact of changes made to a VR system in the course of applying preservation

techniques (e.g. migration or emulation). Thi summary is intended to offer a starting point for

analysis of RT3D VR application execution; fully understanding the significance,

documentation, and management of these characteristics will require further research.

29

Characteristic Description Measurement Approach

Resolution Resolution describes the number of
pixels rendered in each direction per
frame (e.g. 1080x1920 or 2160×1200).

This usually matches the native
resolution of the target display device
(i.e. HMD). Can be verified using
capture software or hardware.

Bit-depth Bit-depth describes the possible range
of values in which color/luminance can
be expressed. Real-time 3D
applications can support 8-bit or 10-bit
per channel output, and can use the
full dynamic range of 0-255 (or 0-1023
for 10-bit) when connected to a
suitable display device.

Usually controlled with GPU driver
utilities (e.g. NVIDIA Control Panel)
but involves compatible OS
components and suitable display
equipment to be applied. Capture
cards may provide an independent
means of verification.

Colour Space The colour gamut, gamma and white
point for output frames. For real-time
3D applications this is usually sRGB,
which can be converted by TV
equipment to the similar Rec. 709.

Usually controlled with GPU driver
utilities (e.g. NVIDIA Control Panel)
but involves compatible OS
components and suitable display
equipment to be applied. Capture
cards may provide an independent
means of verification.

Frame rate /
Frame time

Measurements of the speed with which
frames are generated. Frame rate
describes the number of frames
created per second, while frame time
is the amount of time taken to
generate a frame.

It is not clear how existing RT3D

monitoring tools such as MSI

Afterburner / RivaTuner Statistics

Server interact with VR runtimes.

Runtime specific tools such as Oculus

Profiler and SteamVR Frame Timing

Tool should be used instead.

Latency Measurement of the time taken for
physical input to be translated into
output frames.

We are not aware of any tools for
measuring this for an arbitrary RT3D
VR application, at time of writing.

3D API Feature
Level

The set of shading related features
supported by the 3D API, GPU and
driver set, and targeted by a RT3D
application.

We are not aware of any tools for
identifying feature level support for an
arbitrary RT3D VR application. Must
be identified by examining the source
project.

Internal Timing The clock according to which events

unfold within the simulation of the

virtual environment.

Can only be identified from examining

program code. This may cause issues

where events are not coded to be

framerate independent and thus

become locked to processing speed48.

Table 6. List of performance and rendering characteristics and approaches to their analysis and

documentation.

48 Construct, Delta-time and framerate independence, 2017,

https://www.construct.net/en/tutorials/delta-time-and-framerate-independence-2

https://www.construct.net/en/tutorials/delta-time-and-framerate-independence-2

30

When installed on a system or run for the first time, additional local files may be created by a

VR application to store configuration and saved state information. These may be stored within

the application directory or elsewhere on the host system; identifying locations may require

the use of system call tracing to identify write operations made by the software during

execution49.

3.3. Real-Time 3D VR Documentation

Given the large number of hardware and software components, the separation between user

experience and external environment, and the interactive nature of the medium,

documentation is a potentially expansive topic in relation to real-time 3D VR. Our research

has only really scratched the surface in terms of identifying how we might approach these

novel documentation requirements. It seems likely that in the short term many existing tools

and approaches from the fields of art conservation and digital preservation will be suitable to

guide aspects of the documentation process. In particular, there is a well-established

precedent for documenting technically complex, installation-based artworks in time-based

media conservation50,51,52. We feel that approaches which have already been adapted for

software-based artworks53,54 are particularly likely to be suitable with relatively little

modification. This is due to the similarity of the core components encountered in VR artworks

— such as computer systems, display hardware and custom software — and their

manifestation in artwork characteristics. In this section we will briefly consider extensions

required to existing methods that we identified during this research. This is not exhaustive and

should be considered a starting point for further research.

3.3.1. Acquisition Information Template

In the first phase of our research, we identified that, as for any other artwork acquisition, we

would need to gather sufficient information about VR artworks to make effective decisions

about bringing them into a collection, the archiving of relevant components and planning for

its long-term preservation. Given the number of medium specific questions which arose in

scoping this, we identified a need for a tool to guide the information gathering process at the

early stages of acquisition and so developed a document template for this purpose, partly

informed by Tate’s acquisition template. This is designed to be completed by or in close

collaboration with an artist prior to receiving media from the artist. We tested the template by

inviting the artists we interviewed to complete it for a specific artwork. Version 1.00 of the

49 An example of this approach can be found in: Tom Ensom, ‘Revealing Hidden Processes:

Instrumentation and Reverse Engineering in the Conservation of Software-Based Art’, Electronic
Media Review 5, 2018, https://resources.culturalheritage.org/emg-review/volume-5-2017-
2018/ensom/.
50 Matters in Media Art, web page, 2015, http://mattersinmediaart.org/
51 Guggenheim, Time-Based Media, n.d., https://www.guggenheim.org/conservation/time-based-

media.
52 Smithsonian, Time-based Media & Digital Art, n.d., https://www.si.edu/tbma/.
53 Tate, Software-based Art Preservation – Project, 2021, https://www.tate.org.uk/about-

us/projects/software-based-art-preservation.
54 Guggenheim, The Conserving Computer-Based Art Initiative, n.d.,

https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative.

https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/ensom/
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/ensom/
http://mattersinmediaart.org/
https://www.guggenheim.org/conservation/time-based-media
https://www.guggenheim.org/conservation/time-based-media
https://www.si.edu/tbma/
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative

31

template is available on Tate’s Preserving Immersive Media project page55. Further

enhancement of the template has been carried out by Savannah Campbell and Mark Hellar

and was presented at AIC 201956.

3.3.2. User-Perspective Video Capture

An effective way of capturing the experience of interacting with a real-time 3D VR artwork in

a software-independent way is to capture the perspective of the user as video. User-

perspective video capture then, is the recording of moving image frames as perceived by the

user of the VR system through, for example, an HMD. We identified two approaches that can

be taken to this kind of capture: fixed-view and 360 degree. Fixed-view video is captured from

the perspective of the virtual camera as the user moves. Both rotational and positional

movements become fixed to those that were carried out during the period of recording. This

kind of video can be captured before or after the compositor carries out VR runtime specific

processing. Pre-compositor capture is undistorted and without frame interpolation, while post-

compositor capture will include the effects of these runtime processes.

An alternative approach is to capture 360-degree video from the perspective of the user, which

captures the entirety of the users surroundings and so allows rotational tracking to be

maintained in the resulting media. This is interesting not only as a documentation technique,

but as a preservation approach, as it can offer a video-based surrogate for RT3D VR

experiences which do not use positional tracking (also known as ‘on-rails’). This 360 video

version does not have the fixed dependency on a specific real-time 3D rendering technology,

as the output of the capture process is simply video data which can be played back in a variety

of players (see 4. 360 Video). Features for capturing 360 video from real-time 3D

environments are present in both the Unreal Engine 4 and Unity editor software. Claudia

Roeck has identified and tested a third-party tool for capturing 360 video in compiled UE4 and

Unity real-time 3D applications called Surreal Capture57. The primary limitation of the 360

video capture approach is that positional tracking and other forms of interactivity beyond

rotational tracking are lost. Additionally, a by-product of bypassing the normal fixed field-of-

view player camera is that certain ‘screen space’ visual effects will not be captured (e.g.

vignetting, light shafts, motion blur)58.

Capturing both fixed-view and 360 video in a real-time 3D engine is resource intensive and

can generate very large volumes of data if captured in an uncompressed form. Strain on the

host system can be eased by utilising dedicated encoding hardware (e.g. capture cards or

NVIDIA’s NVENC feature available on some GPUs), freeing up the GPU to focus on rendering.

Decisions over appropriate video encoding are similar to those when working in other video

55 Tate, Preserving Immersive Media – Project, 2021, https://www.tate.org.uk/about-

us/projects/preserving-immersive-media.
56 Savannah Campbell and Mark Hellar, ‘From Immersion to Acquisition: An Overview Of Virtual

Reality For Time Based Media Conservators’, Electronic Media Review 6, 2019,
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/campbell/.
57 Claudia Roeck, Capturing a VR-executable as a 360-degree video, forthcoming report.
58 Gavin Costello, Capturing Stereoscopic 360 Screenshots and Movies from Unreal Engine 4, 2016,

https://www.unrealengine.com/en-US/tech-blog/capturing-stereoscopic-360-screenshots-videos-
movies-unreal-engine-4

https://www.tate.org.uk/about-us/projects/preserving-immersive-media
https://www.tate.org.uk/about-us/projects/preserving-immersive-media
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/campbell/
https://www.unrealengine.com/en-US/tech-blog/capturing-stereoscopic-360-screenshots-videos-movies-unreal-engine-4
https://www.unrealengine.com/en-US/tech-blog/capturing-stereoscopic-360-screenshots-videos-movies-unreal-engine-4

32

production contexts (e.g. chroma subsampling, bitrate, compression), but care should be given

to ensure encoding matches the frames output by the GPU as closely as possible for an

accurate capture (e.g. colour space, bit-depth, framerate). Currently, the value of capture is

impeded by the lack of transparency over where software tools actually capture frames in the

rendering pipeline. Using a dedicated video capture card, capable of intercepting the GPU

output, could improve this situation, but it is unclear whether such hardware could capture

HMD-targeted output in this way. Further research is required to better understand how we

might effectively carry out this kind work and whether available tools are fit for purpose.

Beyond capturing what a user sees, we have also identified a need to capture interaction as

it occurs within the physical installation space. Understanding how interaction has occurred in

the past offers contextual insight into how that work was presented and received. While

photographic methods of documentation will be successful in capturing VR artwork

installations to some extent, the dynamic and interactive nature of VR points towards the

importance of video as an extension of this. Captured simultaneously with user-perspective

documentation, this provides one way of connecting the users virtual experience with their

movements in physical space. Tests during a hackathon at iPRES 201959 demonstrated that

capture tools such as Brekel OpenVR Recorder provide one way of documenting this kind of

interaction, although further research is required to understand how the outputs could be used.

59 Tom Ensom, Jack McConchie, Dragan Espenschied and Claudia Roeck, Understanding the

Variability of Virtual Reality Artworks, hackathon at iPres 2019,
https://ipres2019.org/static/pdf/iPres2019_paper_154.pdf.

https://ipres2019.org/static/pdf/iPres2019_paper_154.pdf

33

4. 360 Video

360 video is a video format in which every direction of view is available to the viewer. Though

the direction of view is unlimited, in most circumstances the viewing position in space is either

fixed or on a predetermined “on rails” path. In this section, we will explore how 360 video is

generated from camera capture, the methods employed to generate a three dimensional

experience from the resulting files, and how spatial audio can be represented.

4.1. 360 Video Production Materials

4.1.1. Camera Capture

360 video can be produced from two distinct workflows, as a capture from a real-time 3D

engine (see 3.3.2. User-Perspective Video Capture) or captured from a camera or array of

camera lenses. Camera capture can result in monoscopic or stereoscopic footage.

Monoscopic 360 video is captured from a single point of view, creating an identical view in

each eye. It is typically captured with dual fisheye lenses, arranged back-to-back, each

capturing half of the 360 degree field of view. Stereoscopic 360 video employs an array of

lenses to capture material from multiple viewpoints which, after processing, provides a slightly

different point of view for each eye. This creates an illusion of depth and a potentially more

realistic experience.

Figure 7. Image taken with a monoscopic 360 camera showing fisheye images corresponding to each

lens.

4.1.2. Stitching

In both of these examples, raw video data from the camera captures have video streams that

must be stitched together to produce viewable video content. There are several software

programs that undertake the process of stitching, and a camera manufacturer might bundle

34

their own proprietary software in order to undertake this. There are also third-party options

available, which contain templates of commonly used lens arrays and in some cases can

automatically detect camera layouts. The process of stitching involves detecting the

overlapping edges of footage in order to combine them into a single file (monoscopic) or a

single file for each eye (stereoscopic). Given that overlapping pixels are blended and

discarded, the process of stitching is an inherently lossy one and is subject to inaccuracies

that can cause artefacts. There is potential for increased accuracy of stitching algorithms as

technology develops, therefore there may be a case for archiving raw camera footage

alongside stitched footage for the purposes of stitching in the future. The storage requirements

for this are potentially vast however, particularly in the case of multi camera stereoscopic

capture due to large resolution files with high percentage of pixel overlap.

Figure 8. GoPro Odyssey multi camera rig and diagram illustrating a section of the image from each

lens generating a stereoscopic image. Image credit: Mystery Box, 2017,

https://www.mysterybox.us/blog/2017/1/31/shooting-360-vr-with-gopro-odyssey-and-google-jump-vr.

4.1.3. Projection Format

The video files that result from the stitching process are stored in a 2D video format (planar),

with a rectangular aspect ratio. The method employed to store the 3D video information in a

planar video file is referred to as the projection format.

360 video files are played back using specialised pieces of software known as 360 video

players. These players are real-time 3D applications (see 3.2. Real-Time 3D VR Applications)

capable of decoding video and mapping it onto the interior of a 3D object, the shape of which

corresponds to the chosen projection format (e.g. a sphere for equirectangular or a cube for

cubemap). A UV map (see 3.1.2. Scenes and Assets) or equivalent information, which is

specific to this projection format, tells the 360 video player how to correctly distribute the video

pixels over the interior surface of the 3D object. During playback the viewer of the 360 video

is positioned at the centre of the 3D object and the mapped video is viewed from this position.

Players may be standalone pieces of 3D software or may be authored using RT3D engines

such as Unity or Unreal Engine.

The most common projection format is called equirectangular projection, familiar to us as the

type of geometric distortion used to represent the surface of the earth in a 2D form. The

inherent distortion of the pixels in their planar equirectangular form is referred to as curvilinear.

One downside to this projection type is that the top and bottom of the image use a

disproportionately large area of pixels in comparison to that of the centre of the image —

https://www.mysterybox.us/blog/2017/1/31/shooting-360-vr-with-gopro-odyssey-and-google-jump-vr

35

varying pixel density. Note in Figure 9 below, how a large proportion of the pixels are used on

the ceiling and table which have relatively low detail in comparison to the central section of

the image where most of the detail is. This is particularly inefficient given that the ceiling and

table areas are mostly in the user's periphery vision where detail perception is minimal. This

inefficiency has led to the use of cubemap projection, where the 360 Video file is projected

onto the inside surface of a cube. This projection type has more even pixel density than

equirectangular projection, though density still varies to a lesser degree over the cube faces.

Figure 9. The image from Figure 7 in equirectangular format.

Cubemap projection types allow for more efficient use of compression codecs than

equirectangular, since the inherent curvilinear distortion in equirectangular video introduces

distortion into the representation of the path of a moving object. One of the ways in which

compression attempts to minimise file sizes and data rates is by applying temporal

compression, which is based upon the principle that from one video frame to the next most

pixels remain the same, though the point of view may have changed slightly, or an object may

have moved within the frame. Instead of redrawing the entirety of the pixels, motion

compensation is used to represent the difference between each frame instead, using less data

to do so. This process is at its most efficient when movement of perspective or object is in a

straight line, and hence is hindered by curvilinear distortion60.

A further development in projection format is the equi-angular cubemap (EAC) — in this

projection type, a distortion mesh (see 3.1.2. Scenes and Assets) is introduced onto each face

of the cube, resulting in each degree of viewing angle being assigned an equal number of

pixels, creating more even pixel density61. Other projection types are being developed, such

60 Rabia Shafi, Wan Shuai and Muhammad Usman Younus, ‘360-Degree Video Streaming: A Survey

of the State of the Art’, Symmetry 12(9), 2020, https://doi.org/10.3390/sym12091491.
61 Chip Brown, Bringing pixels front and center in VR video, 2017,

https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/.

https://doi.org/10.3390/sym12091491
https://blog.google/products/google-ar-vr/bringing-pixels-front-and-center-vr-video/

36

as Facebook’s pyramid projection format62, a development of the cubemap but a pyramid

shape is used in place of the cube.

Figure 10. Representation of the rendering of equirectangular (top) and cubemap (bottom) projection

types. In this process, a stored 360 image (left) is mapped onto a suitable 3D geometry primitive

(centre), resulting in a projected image viewable with 3DoF from the centre of the primitive (right).

4.2. 360 Video Audio

Audio accompanying 360 video can be either be of the fixed mono/stereo type, where audio

channels are played through a user’s headphones irrespective of the position of the head, or

it can use the position of the HMD to calculate a binaural mix from a multitrack spatial

recording, in real time, relative to the position of the head. This gives the impression of the

sound sources changing position relative to the video, potentially creating a more immersive

soundscape.

4.2.1. Order of Ambisonics

In the case of 360 video captured from a camera with accompanying spatial audio, it is likely

to be recorded by an ambisonic microphone — which in its simplest form (first order, or 4-

channel) uses an array of four microphone capsules to record 360 degrees of audio. Second

order (or 9-channel) ambisonics employs the same techniques but achieves improved spatial

resolution with 9 microphones, while third order (or 16-channel) ambisonics uses 16

microphones for further resolution.

62 Evgeny Kuzyakov and David Pio, Next-generation video encoding techniques for 360 video and

VR, 2016, https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-
techniques-for-360-video-and-vr/.

https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/
https://engineering.fb.com/2016/01/21/virtual-reality/next-generation-video-encoding-techniques-for-360-video-and-vr/

37

4.2.2. Ambisonic Formats

This audio in its raw, recorded form is referred to as ambisonic A format. For this audio to be

embedded into a video file, it undergoes processing to generate B format, where the raw audio

from the capsules is converted to four audio files that represent the X, Y and Z spatial axes

and W, overall amplitude. B format represents the captured space or sound field in an

intermediate form for decoding- a fundamental principle is that it is speaker agnostic and can

be decoded for a variety of speaker arrays. The conversion from A to B format is unique for

each microphone, based on microphone make, model and individual capsule calibration.

Software to undertake this process (often a VST plugin for a digital audio workstation) is

therefore provided by the manufacturer. Some microphone arrays are available that record

natively into B format, though these are less common.

4.2.3. Head-related Transfer Functions

In VR, B format ambisonics are decoded by a head-related transfer function (HRTF) to

generate a real time binaural mix. An HRTF is an algorithmic process that models the human

head and ears within a sound field recording, and approximates what a pair of human ears

would hear within that space at a given orientation. It undertakes several key calculations to

do this, such as: calculating the time difference taken for a sound to reach each ear; calculating

the diffraction of sound waves caused by the head; and sound waves heard through being

absorbed into the head and chest. This is performed in real time by the player, taking positional

input from the HMD. Several data sets for the HRTF algorithm exist, based on averaged

characteristics of human head and ear sizes and shapes. Whilst some data sets allow for

adjustments of head size and ear spacing to accommodate differences in head shape and

sizes, the calculations do not achieve perfect accuracy.

4.2.4. Format Conventions

Care must be taken in the preservation of ambisonic audio to note the specific conventions

used to generate the B format files, as these impact how it is played back. B format files can

be placed in different orders according to various conventions such as Furse-Malham, ACN

and SID. Furthermore, to achieve the correct spatialisation the files are normalised in relation

to each other according to various conventions such as maxN or SN3D. Two prominent

exchange formats exist, FuMA (Furse-Malham) prescribes the channel ordering WXYZ and

maxN normalisation, whilst AmbiX (Ambisonic eXchange) prescribes WYZX (ACN) ordering

SN3D normalization. Video containers are agnostic to these conventions and we rely on file

metadata to accurately reflect the scheme used to ensure that a playback device is able to

correctly interpret the files.

4.3. 360 Video File Types & Metadata

4.3.1. Aspect Ratio and Resolution

38

In storage, 360 video file formats show similar characteristics to those of planar video. The

aspect ratio of monoscopic video is commonly 2:1, which relates to 180 degrees of vertical

vision and 360 degrees horizontal. The resolution of the stored file is often higher than that

planar video — considering the viewable area of the video is 90 degrees and hence around

25% of the entire image, a 360 video would have to have four times the resolution of a planar

video to achieve comparable levels of pixel density. Pixel resolution is often higher still in

stereoscopic, as images for each eye are stored either in a side by side (SBS) or over/under

(OU) format. This requires a further doubling of the image resolution, meaning that to view a

stereoscopic image with comparable quality to a 1920x1080 planar video file, a horizontal

resolution of approximately 16000 pixels would be required in an SBS file.

4.3.2. Frame Rates

The frame rate experienced by a VR user is a combination of the video frame rate and the

refresh rate of the HMD. Smooth playback is potentially impacted by a low frame rate, latency

in the VR tracking and rendering system, and to some extent the content of the video — high

contrast vertical lines will create more visible motion artefacts such as ghosting than a scene

without fine detail. Because of the wide virtual viewing area and the ability for the user to

quickly rotate the head over large virtual areas of video, motion artefacts and latency can be

experienced either consciously or subconsciously at higher frame rates than the equivalent

frame rate of planar video. The study of VR sickness is complex and is thought to depend on

many factors, but latency has been identified as one contributing factor63. Whilst Oculus

suggests a minimum frame rate of 30 frames per second (FPS) for 360 video in its guidelines

for content64, it has been argued that higher frame rates will bring an improvement in quality

should other factors such as storage or bandwidth allow.

4.3.3. File Sizes

High frame rates, large resolutions and stereoscopic images all combine to cause a significant

increase in file sizes compared to planar video in similar formats. As a result, compression is

often employed in playback to address issues of streaming bandwidth and storage —

especially in the case of untethered devices such as the Oculus Go which is limited to 32GB

or 64GB of onboard storage. At the time of writing, there are no specific codecs for 360 video

— H.264 and H.265 are commonly employed. It is likely that a compromise between

compression level, frame rate and resolution will have to be reached, optimised for the visible

characteristics of the content and minimising the corresponding artefacts.

As online streaming becomes more commonplace, Scalable Video Coding is being utilised to

maximise visible quality whilst minimising data bandwidth65. In this technique, each area of

63 Eunhee Chang, Hyun Taek Kim and Byounghyun Yoo, ‘Virtual Reality Sickness: A Review of

Causes and Measurements’. International Journal of Human–Computer Interaction 36 (17), 2020,
https://doi.org/10.1080/10447318.2020.1778351.
64 Marcos Carranza, Introduction to 360 Video for Gear VR, 2017,

https://developer.oculus.com/blog/introduction-to-360-video-for-gear-vr/.
65 Rabia Shafi, Wan Shuai and Muhammad Usman Younus, ‘360-Degree Video Streaming: A Survey

of the State of the Art’, Symmetry 12(9), 2020, https://doi.org/10.3390/sym12091491.

https://doi.org/10.1080/10447318.2020.1778351
https://developer.oculus.com/blog/introduction-to-360-video-for-gear-vr/
https://doi.org/10.3390/sym12091491

39

video (in the example of cubemap projection, each face of the cube) has a subset of videos

with greater compression and hence smaller file sizes/bandwidth. The area being viewed is

streamed in maximum possible quality whilst the video in the periphery areas is streamed from

a file of lesser quality.

4.3.4. Metadata

Due to the increased number of variable parameters in 360 video over planar video, there are

increasing demands on the file metadata to accurately describe projection type, distortion

map, and audio convention. At the time of writing, standards are being expanded to include

capture information from the camera such as GPS position, direction of motion and other

sensor data. Dominant capture standards at this time are the GoPro metadata format (now

renamed to General Purpose Metadata Framework or GPMF) and the Camera Motion

Metadata Spec. The GPS information can be used to situate the footage within databases

such as Google street view, and the motion information can be used to enhance post

processing procedures such as stitching and image stabilization. For playback, there is a

spatial media metadata standard put forward by Google, and a corresponding spatial media

metadata injection tool66. One particularly promising aspect for preservation is that it proposes

to describe the relationship between video file and projection type mathematically within the

metadata, adding a degree of self description. At the time of writing it is too early to comment

on how widely it has been adopted. Apple now offers the ability to inject spatial metadata

information with the Compressor tool. In absence of a metadata standard, some players had

previously interpreted a string of characters from the file name- such as “_LR.mp4” for

Left/Right stereoscopic panoramic video67.

4.4. 6DOF & Volumetric Video

One of the primary differences between 360 video VR and RT3D VR is that in 360 video

playback interactivity is limited to rotation left and right, rotation up and down, tilt left and right

(3DoF). Moving the head from side to side or up and down positionally does not result in any

change in view, given that the camera’s position in a space is fixed as the video is pre-recorded

from a fixed perspective.

There are several attempts underway in the VR industry to make limited 6DoF possible for

360 video, such as Adobe’s project Sidewinder or HTC’s 6DOF Lite. Some of these methods

make use of a depth map which can be generated in some cases by stitching programs or

capture hardware, whilst others, such as HTC’s 6DOF Lite are able to generate a limited 6DoF

experience from existing stereoscopic video by generating depth information in real-time.

Tools to perform these functions are blurring the boundaries between 360 video players and

real-time 3D engines, as more complex features of RT3D rendering such as vertex

displacement are employed.

66 Google, Spatial Media, 2018, https://github.com/google/spatial-media.
67 Oculus, Oculus Android VR Media Overview, n.d.,

https://developer.oculus.com/documentation/native/android/mobile-media-overview/.

https://github.com/google/spatial-media
https://developer.oculus.com/documentation/native/android/mobile-media-overview/

40

The similarities with RT3D rendering grow further still with volumetric capture, a technique that

uses an array of cameras to capture a scene from every angle, hence allowing a subject or

volume to be viewed from any angle. It differs from common 360 video formats in that it is

often filmed from the outside and might be used to capture the performance of a human for

example. It has similarities to the techniques used in photogrammetry, a capture technique

which can derive a 3D representation of an object using photographs taken from multiple

perspectives, but is carrying out this process of conversion from still images frames to point

cloud 3D data in real time. At the time of writing, the amount of storage and computational

power required put it outside the scope of this report.

41

5. Suitability of Existing Preservation Strategies

In this section we will use the insights gained in the preceding sections to explore approaches

to the acquisition and long-term preservation of VR artworks. Ideally, these approaches would

allow us to prevent loss of access to a VR artwork due to the failure and obsolescence of

components. While these processes are something time-based media conservators contend

with for any technology-based artwork, our research indicates that their effects may be

particularly severe for VR artworks because of the following factors:

● Frequency of failure: VR hardware is handled frequently when a work is installed (i.e.

HMDs, controllers) making it more likely to be damaged.

● Rate of change: Commercially available VR hardware changes very rapidly, with

devices being removed from sale within 5 years of release.

● Dependency on manufacturer-specific software: In addition to the complex

software and hardware interdependencies familiar from software-based artworks, VR

applications typically require manufacturer-specific software to be present in order to

access that manufacturer's VR hardware devices. Support for this software layer has

to be built into the application when it is created if it is to support that hardware.

In the following sections we will explore factors we have found which are likely to complicate

the process of acquiring and preserving VR artworks when compared to the more familiar

forms of video and software-based art. We consider processes at point of acquisition and

preservation strategies, the latter drawing on established concepts from conservation

including stockpiling, hardware migration, emulation and code migration as starting points for

discussion. We do not propose that these approaches are mutually exclusive, but rather that

could be used in combination to maximise chances of providing long-term access to VR

artworks.

5.1. Acquiring VR Artworks

5.1.1. Acquiring Real-Time 3D VR Artworks

For real-time 3D VR artworks, the point of acquisition is the time to gather together materials

and documentation that will serve to support the work's life in the collection. Compiled real-

time 3D VR applications are similar to those associated with other forms of software-based

art, and many of the approaches we have developed for software-based art can be applied.

Based on procedures in use at Tate, we would expect materials to be delivered by the artist

(or generated at point of acquisition) to include: a computer system and other hardware

suitable for running the artwork (or specification for sourcing an equivalent); executable

software; source materials; and documentation.

As a starting point for acquiring a RT3D VR software application, we would typically test the

software received using either an artist-supplied computer system or a new computer system

created from artist-supplied specifications. Due to the complexity of VR systems and the many

42

variables involved in correctly setting up and running an application, it will be beneficial for the

artist (or someone else familiar with the artwork) to be present for this. This is an opportunity

to begin to learn how the work functions, how it should be installed, and how it might be

preserved. This is also the point at which a backup system would be created. Tate’s existing

best practice guidelines for software-based artworks is to ensure there are two functional

reference systems available for a specific artwork. We therefore recommend that those aiming

to preserve VR artworks source and configure two sets of reference hardware when an artwork

is acquired. This is based on the principle of having a backup system for display in case of

failure, and a reference system for monitoring the impact of changes. The process of creating

another version of the system is a useful tool in understanding the artwork and validating

dependencies.

As an additional backup of the software environment — and again, a standard part of software-

based artwork preservation at museums such as Tate68 and the Guggenheim69 — disk images

can be created from storage media of the computer system. When captured from a computer

system, we can consider the disk image a representation of a complete software environment,

incorporating an operating system, installed programs and user data. This image is useful not

only because it encapsulates all the data contained, but because we can use it as a basis for

emulation or virtualisation as a means of accessing these environments in the long-term (see

5.4. Emulation and Related Approaches). This is a well-established approach to preserving

software environments in digital preservation and time-based media conservation, and

resources and guidance can be found elsewhere70,71,72. We propose that this need be met by

creating raw disk images of the storage media contained in the reference systems acquired

or created. The resulting disk images ensure the complete software environment is captured

and can then be used as a means of cloning the content to new storage media and as the

basis of future emulation and virtualization work.

Supplementing this, it is beneficial to acquire builds of the software for as many different

platforms as possible, to open up further options for keeping the software accessible. Building

for Windows, MacOS and Linux operating systems increases the chances that a suitable

software environment can be recreated in the future. Target VR runtimes and 3D APIs also

need to be considered at this time, as support for a specific runtime or API must be included

when the application is built. As noted in 2.2.1. VR Runtimes and 2.2.3. 3D APIs, targeting

open standards such as OpenXR and Vulkan is likely to open up the largest number of options

for hardware migration (see 5.5. Code Migration and Related Approaches for further

discussion). However, changing the runtime or API can have significant effects on the

characteristics of the software, so any new builds should be carefully tested, ideally in

collaboration with the artist or studio.

68 Tate, Software-based Art Preservation – Project, 2021, https://www.tate.org.uk/about-

us/projects/software-based-art-preservation.
69 Guggenheim, The Conserving Computer-Based Art Initiative, n.d.,

https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative.
70 MoMA, Disk Imaging, resources from Peer Forum I: Disk Imaging, 2017,

https://www.mediaconservation.io/disk-imaging.
71 Eddy Colloton, Jonathan Farbowitz, Flaminia Fortunato and Caroline Gil, ‘Towards Best Practices

In Disk Imaging: A Cross-Institutional Approach’, Electronic Media Review 6, 2019,
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/colloton/.
72 Tom Ensom, Disk Imaging Guide, 2021, https://www.tate.org.uk/file/disk-imaging-guide-pdf.

https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.tate.org.uk/about-us/projects/software-based-art-preservation
https://www.guggenheim.org/conservation/the-conserving-computer-based-art-initiative
https://www.mediaconservation.io/disk-imaging
https://resources.culturalheritage.org/emg-review/volume-6-2019-2020/colloton/
https://www.tate.org.uk/file/disk-imaging-guide-pdf

43

Acquiring source materials for software-based art is important for preservation purposes73,

allowing the migration or modification of the software in order to maintain access in a changing

technical environment. Source materials associated with VR applications pose challenges due

to the complex processes and toolchains involved in production. This may be work carried out

by a team, may involve the use of many distinct software tools and may involve multiple format

conversions before assets are used in an engine. The capture and archiving of production

environments as disk images may offer a pragmatic solution. This could be approached in two

ways. The first is to disk image computers used in production directly. While providing the best

way to ensure a complete capture, the indiscriminate nature of this approach results in the

capture of all programs and data installed on the target machine, which may include

unnecessary and/or personal data that would not be suitable for archiving. The second

approach is to acquire the engine project (essentially a structured directory) and recreate the

production environment on a physical or virtual machine by installing the appropriate engine

binaries and testing the configuration. This is less invasive than the first approach and would

reduce the amount of data that would have to be stored, but risks incomplete capture if not

thoroughly tested (e.g. by recompiling the software and comparing it to the artist-supplied

software). Whether it is useful to acquire asset production materials (i.e. projects and files

associated with modelling, texture painting, material definition animation and other workflows)

remains an open question. While having access to these would allow for more export options

in the future and avoid problems with limited export options in engines, gathering and caring

for them would have significant resource implications for the institution taking them on.

Documentation of real-time 3D VR artworks is an area we have not thoroughly explored in this

report. However, the Acquisition Information Template and capture approaches discussed in

3.3. Real-Time 3D VR Documentation can be used as a starting point for RT3D VR-specific

documentation work. Further research is required to understand additional forms of

documentation which might find use in the conservation of software-based artworks. For the

time being, we recommend that institutions work closely with the artists throughout the

acquisition process to ensure that the materials retained are complete and well documented.

5.1.2. Acquiring 360 Video VR Artworks

360 video utilises the same container formats and compression codecs as planar video. File

types will be familiar to those working in video preservation and well-established preservation

strategies74 will broadly apply. During the acquisition process it is common to collect a

compressed playback copy of an artwork alongside a primary copy75. The primary copy should

ideally be uncompressed or have minimal compression and this principle applies directly to

video captured from RT3D engines. When collecting 360 video from camera capture, we are

faced with the extra potential choice of collecting the raw camera output for restitching at

higher quality in the future. At the time of writing, many consumer grade 360 video cameras

73 Deena Engel and Glenn Wharton, Reading between the Lines: Source Code Documentation as a

Conservation Strategy for Software-Based Art, Studies in Conservation 59 (6): 404–15, 2014,
https://doi.org/10.1179/2047058413Y.0000000115.
74 Matters in Media Art, Sustaining Media Art, n.d., http://mattersinmediaart.org/sustaining-your-

collection.html.
75 For digital video, the primary copy is typically a file in a high quality, stable format which is used for

creating additional preservation exhibition copies.

https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
https://doi.org/10.1179/2047058413Y.0000000115
http://mattersinmediaart.org/sustaining-your-collection.html
http://mattersinmediaart.org/sustaining-your-collection.html

44

will compress in real time during recording and store files in mp4 format with h264 codec.

Post-stitching, the primary file may be edited and provided for acquisition in an intermediary

format such as ProRes, and hence the primary material may be in a more lossy codec than

the intermediary. An important point here is that because the stitching and editing process is

potentially lossy and can create artefacts, the compressed camera files could still contain more

accurate visual information than the intermediary, potentially making the case for them as a

preservation format.

Extra care should be taken to ensure that the metadata accurately describes the projection

format and spatial audio convention. As with other video types, checking for consistent

playback across a variety of players and HMDs is a useful tool in checking for anomalies or

potential areas for error. Because of the relatively fast paced development of headsets, a

regular maintenance activity of playing the material on the newest generation of headset is

advisable to provide early warning of obsolescence or need for migration. An HMD might be

experienced slightly differently by different users, and in combination with their inherent

distortion due to the use of wide-angle lenses, some degree of quality control is likely to be

better undertaken on a calibrated monitor in combination with a headset.

At the time of writing, it is unclear how depth maps may be integrated into 360 video though

software from Kandao is able to generate depth information at the stitching phase76 and it is

reasonable to expect that players may offer the ability to generate real time depth maps in the

future77. The impact this has on the experience of the work should be considered and

documented.

5.2. Hardware Stockpiling

An intuitive first response to the risks of hardware failure and obsolescence is to securely store

digital objects78 and stockpile suitable hardware. Stockpiling has well-established precedent

in time-based media conservation, and alongside ongoing collaboration with specialised

communities outside the museum, is one of the primary strategies for ensuring long-term

access to CRT monitors for Tate’s large collection of video art. However, applying the same

logic to VR system hardware raises many difficult to answer questions. Given the short

lifespans of interactive equipment used in public galleries and Tate’s mandate to care for

artworks in perpetuity, how many pieces of hardware is enough? Given the relatively small

number of VR artworks likely to be acquired by any one institution (this remains an emerging

medium), how can we justify the considerable financial outlay of acquiring such a quantity of

hardware? Given that VR-specific hardware like HMDs and tracking systems are contingent

76 Mic Ty, Kandao Obsidian 3D 360 cameras can now export a depth map, 2016,

https://360rumors.com/kandao-obsidian-3d-360-cameras-can-now-export-depth-map/.
77 Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin,

‘MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images’, at European
Conference on Computer Vision, 2020, http://visual.cs.brown.edu/projects/matryodshka-webpage/.
78 As we have not identified any issues relating to the effective archival storage of digital materials that

are unique to VR, this topic will not be addressed further in this report. It is worth noting however that
virtual reality artwork binaries and project files, as well as disk images, can present very large
volumes of data.

https://360rumors.com/kandao-obsidian-3d-360-cameras-can-now-export-depth-map/
http://visual.cs.brown.edu/projects/matryodshka-webpage/

45

on specific computer hardware, what would be required to stockpile suitable computers as

well?

The model of stockpiling and specialist repair that museums have employed to maintain

access to CRT television technology has worked thus far because these technologies were

widely used during the time of their production and sale. The same could not be said for VR

hardware at this time, which despite recent interest remains relatively niche. It is currently not

clear how easy it would be to source spare parts or service manuals in the long term, or what

specialist support might be available. Based on the challenges identified here, the stockpiling

and maintenance of a pool of VR hardware does not seem to be a practical option for

maintaining long term access to VR artworks. However, ensuring access to at least two sets

of hardware for any one artwork, as described in the preceding section, does seem a sensible

short-term measure. Whilst stockpiling larger quantities of hardware might seem to solve a

problem, we expect that all hardware will fail eventually. In combination with budget and space

restrictions, other preservation strategies are necessitated.

5.3. Hardware Migration

If replacement of failed hardware is not possible with like-for-like hardware, we can instead

consider replacement with newer hardware — a process known as hardware migration. For

example, we might hope to run an old VR application with a contemporary HMD and tracking

system. Based on our research, we feel that there is a high likelihood of these kinds of changes

resulting in loss of the characteristics that define an artwork, or the loss of access to a

particular VR artwork altogether. We can look at the impact of changing HMD as an example.

At best, this might result in the loss of the distinctive character of the original HMD (e.g. the

lower resolution panels and restricted field-of-view found in earlier models), which may or may

not be significant for that particular artwork. At worst, it might result in the loss of functionality

altogether, due to the replacement HMD lacking software support for communication with the

VR application — a newer HMD is likely to require the use of new drivers, APIs and/or

runtimes, support for which may not have been built into the application.

As noted earlier in this report, these risks can to some extent be lowered by creating multiple

builds of the application which support different platforms. This should include building support

for a variety of VR runtimes into the application and creating multiple versions of the application

for different operating systems and 3D APIs. Carrying out this kind of preparatory work allows

us much more flexibility in recreating a suitable execution environment in the future by

maximising the ways in which a functional system could be pieced together. If an open

standard for VR runtimes such as OpenXR is widely adopted, building support for such a

standard into VR applications may greatly ease the process of hardware migration.

Theoretically, it might be possible to run older VR applications built with OpenXR support on

any contemporary VR hardware supporting the standard, providing backwards compatibility

with earlier versions of the standard is maintained. Whether backwards compatibility will be

maintained is uncertain, as we do not know if the maintainers of OpenXR, the Khronos Group,

see this as a priority.

3D engines and VR hardware are both unlikely to be created by artists themselves, therefore

control over the availability of OpenXR to artists lies with the companies that create these

46

technologies. Although signs of industry investment and adoption are promising, we cannot

be certain as to the extent to which this standard will be adopted or supported by software and

hardware. There are also good reasons to treat industry investment in open standards with

some skepticism, as priorities are known to change. As noted in 2.2.3. 3D APIs, Apple have

recently decided to deprecate their OpenGL implementation on MacOS in favour of their own

proprietary Metal API. OpenXR is a consortium largely made up of industry partners with paid

for representation, though tiers of membership are available, and representation of cultural

heritage institutions has been discussed in outline.

While use of open standards such as OpenXR has clear advantages for maintaining access

to VR artworks in the short term, their longer-term benefits may be limited by other factors

affecting the feasibility of hardware migration. For example, significant changes in prevalent

CPU architectures, operating systems and 3D APIs will also affect the viability of running older

VR applications on contemporary computers. We must therefore consider the possibility of

more significant interventions in the future, such as emulation and code intervention, which

we consider in turn in the following sections.

5.4. Emulation and Related Approaches

Emulation and related approaches are preservation strategies which make use of software to

allow one computer system to behave as if it were a different computer system. This allows

us to run unmodified software (e.g. a VR application or 360 video player) on computer

hardware which it was not designed to run on. Within this category of approach we include not

only emulation and virtualisation, but also related tools like compatibility layers and wrappers.

These can be contrasted with code migration and related approaches, which are preservation

strategies that make changes to the software itself through the modification or rewriting of

code. These are discussed further in the subsequent section.

Emulation relies on the use of tools which recreate a particular set of hardware (the most

important of which is the CPU) in software. For long-term preservation purposes, this allows

a software environment (e.g. a disk image) to be separated from obsolete physical hardware

and accessed through emulated hardware on a contemporary computer system. Related to

emulation is virtualization, which involves many of the same principles but additionally allows

the guest (i.e. the emulated machine) access to some physical hardware on the host machine,

which improves performance. Emulation and virtualization have demonstrated uses in the

conservation79,80 of software-based art and use of emulators is common in the care of

software-based artworks at Tate. We might therefore expect these approaches to be

applicable to VR artworks too. They can be seen as a first logical step for treatment, as in

comparison to the more involved work of code migration, they can be carried out without

source code access or developer time.

79 Klaus Rechert, Patricia Falcão and Tom Ensom, Introduction to an Emulation-Based Preservation

Strategy for Software-Based Artworks, 2016, http://www.tate.org.uk/research/publications/emulation-
based-preservation-strategy-for-software-based-artworks.
80 Patricia Falcão, Ashe Alistair, and Brian Jones, Virtualisation as a Tool for the Conservation of

Software-Based Artworks, at iPRES 2014,
https://www.academia.edu/12462584/Virtualisation_as_a_Tool_for_the_Conservation_of_Software-
Based_Artworks.

http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
http://www.tate.org.uk/research/publications/emulation-based-preservation-strategy-for-software-based-artworks
https://www.academia.edu/12462584/Virtualisation_as_a_Tool_for_the_Conservation_of_Software-Based_Artworks
https://www.academia.edu/12462584/Virtualisation_as_a_Tool_for_the_Conservation_of_Software-Based_Artworks

47

At time of writing, full system emulation does not appear to be a feasible strategy for preserving

virtual reality artworks. This stems from limitations in emulated hardware performance and

functionality. Emulators rely on virtual CPU and GPU hardware, which recreates or

approximates physical graphics hardware in software which can execute the necessary code.

However, due to the overhead of executing this code in software, virtual hardware tends to be

much less powerful than its physical counterpart, resulting in performance problems when

running applications with high performance requirements — such as VR applications. At time

of writing, the emulated GPUs we examined (including those packaged with QEMU, VirtualBox

and VMware) do not offer sufficient 3D rendering capabilities to run virtual reality artworks at

required speeds (or at all, in some cases). Furthermore, the current generation of VR runtimes

require access to a physical GPU in order to access an HMD in direct mode. A workaround

for this is to allow the emulated environment a level of access to a physical graphics card via

techniques called paravirtualization and passthrough. However, these techniques still rely on

physical hardware and associated drivers, thus limiting the value of the resulting emulated

machine for preservation purposes. Time will tell whether or not emulation will become suitable

for running the VR applications of our current time. Given trends in computing, it seems likely

that this may eventually be so, but remains contingent on sufficient interest from enthusiast

communities or industry to create suitable emulators.

The use of compatibility layers and similar tools offers an alternative to full system emulation

with short-term relevance to the preservation of VR artworks. Compatibility layers and

wrappers translate system or API calls made by a program to another system or API. By virtue

of shared processor architectures (most contemporary desktop computing software is

compiled for x86-64 processors) a program built for one operating system can be executed on

another operating with minimal performance overhead, as any native code can be run on the

CPU as-is. However, system and API calls are usually specific to the operating system on

which they were built to run. For example, Wine81 allows the execution of software designed

for modern Windows operating systems on modern Linux operating systems (including

applications which require the use of the Direct3D API) by translating system calls from one

platform to another. While the dependency on a specific processor architecture remains, tools

such as Wine do have the potential to at least slow obsolescence by allowing software to be

run on a wider variety of software environments.

Compatibility layers have also been developed to allow the use of applications designed for

one VR hardware set with another. For example, Revive82 allows Oculus-targeting applications

to be used with HTC Vive hardware, while OpenOVR83 allows the inverse for SteamVR

targeting applications. Whether similar tools will emerge to support legacy VR applications on

future platforms is unknown, but given the level of interest in VR from the gaming community

it’s easy to imagine retrogaming enthusiasts taking on this kind of challenge — particularly

with the financial support of cultural heritage institutions. The use of proprietary technologies

will slow progress in this area, as they require time-consuming reverse engineering work to

make sense of. This gives further support to the notion that we should favour open standards

where possible. Again, use of OpenXR would provide a significant advantage here as an open

81 Wine, WineHQ web page, n.d., https://www.winehq.org/.
82 LibreVR, Revive, GitHub repository, 2020, https://github.com/LibreVR/Revive.
83 Campbell Suter, OpenComposite GitLab repository, 2020, https://gitlab.com/znixian/OpenOVR.

https://www.winehq.org/
https://github.com/LibreVR/Revive
https://gitlab.com/znixian/OpenOVR

48

standard: a specification of the standard is publicly available, which theoretically allows

compatibility software to be written in compliance with the standard that can then communicate

with any other software that is compliant.

While it is impossible to predict whether or not the emulation approaches discussed in this

section will be available to us in the future to apply to VR applications, there are important

steps we can take now to prepare for the eventuality that they are. One of these is to, as

described in 5.1.1. Acquiring Real-Time 3D VR Artworks, create raw disk images of the

storage media of artist-verified and tested computer systems. Disk images can then be used

as the basis of emulation efforts, without the need to reconstruct a suitable software

environment from scratch in the future — something which is likely to be very challenging due

to the large number of components involved and their delivery through internet-connected

installers. To supplement imaging and ensure we can define suitable virtual hardware in the

future, the hardware of the physical computer system should be carefully documented. Finally

we should continue to advocate for the use of open standards in the development of VR

systems where possible, including supporting artists in the creation of new software builds if

necessary. Where proprietary technologies are unavoidable, we can try and advocate for

greater openness within the industry and ensure that legal provisions better protect those

having to bypass copyright protections in order to support legacy access to software.

Practitioners in the United States have had success developing best practices for applying the

fair use84 right to digital preservation and a flexible exemption that favors public interest uses85.

They have also obtained regulatory relief, such as the recent DMCA copyright exemptions

adopted by the US Copyright Office86.

5.5. Code Migration and Related Approaches

Code migration and related approaches are preservation strategies that make changes to

software (e.g. a VR application or 360 video player) through the modification or rewriting of

code, so that it remains accessible in changing technical environments. There are many

different ways we could apply this approach to VR artworks, varying in the extent to which

original source code is altered and the frequency with which changes would be made. In this

section, we consider the hypothetical application of code migration to a VR application built in

a game engine. It is important to note this approach is contingent on access to production

materials, including at least the engine project and assets, and engine binaries of the

appropriate version with which to open it. The challenges involved in acquiring these are

discussed further in 5.1.1. Acquiring Real-Time 3D VR Artworks, where we propose that disk

imaging offers a particularly useful tool.

84 Brandon Butler, Law & Policy Advisor for the Software Preservation Network, noted in a comment on

an early draft of this report that fair use exists in several legal regimes outside the US, but countries
without fair use (including many countries with ‘fair dealing’ provisions, such as the UK) should explore
what other provisions in their law can support software preservation or consider advocacy for their
adoption.
85 Software Preservation Network, Code of Best Practices for Fair Use in Software Preservation, n.d.,

https://www.softwarepreservationnetwork.org/project/code-of-best-practices-for-fair-use/.
86 Kendra Albert and Kee Young Lee, A Preservationists Guide to the DMCA Exemption for Software

Preservation, 2018, https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-
dmca-exemption-for-software-preservation/.

https://www.softwarepreservationnetwork.org/project/code-of-best-practices-for-fair-use/
https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-dmca-exemption-for-software-preservation/
https://www.softwarepreservationnetwork.org/a-preservationists-guide-to-the-dmca-exemption-for-software-preservation/

49

A use of code migration with short-term value would be to add interoperability to an existing

VR application. This could involve adding support for a new VR runtime by installing an

additional plugin (or adding equivalent code) or creating a new application build targeting a

different operating system. In the short term this may be an effective way of opening up more

hardware migration options, but is limited by the lack of long-term support for specific engine

versions. As discussed in 3.1.1. Engines and Project Files, new engine versions are released

multiple times per year, superseding older versions which eventually become publicly

inaccessible. This points to a need to migrate between engine versions, an approach we call

incremental migration. This frames the process of code migration as something occurring in

small steps which, given the frequency of engine version releases, would be undertaken as a

regular maintenance activity. This diverges from typical approaches to time-based media

conservation where intervention happens infrequently, often at moments associated with

significant events in the life of the artwork such as acquisition or display. As we are not aware

of any examples of this kind approach being applied in the field, drawing any conclusions as

to its viability is difficult. Further research is required to determine whether a reframing of

migration as maintenance would be practical or desirable in the cultural heritage sector, given

the resources it would entail.

Assuming incremental migration is not a practical approach, what would be the impact of less

frequent interventions on the viability of code migration? In these cases, it is likely that more

extensive modification of the underlying code would be required. While this has been

demonstrated as a viable approach in the conservation of software-based art87,8889, when

considered in the context of VR applications (and other real-time 3D software produced using

engines) additional complications arise. The first issue is access and rights regarding the use

of engine source code, which would be required for this kind of approach. As discussed in

3.1.1. Engines and Project Files, the full Unity source code is not accessible or modifiable

without negotiation of a licence. Unreal Engine 4 has publicly accessible source code, with

relatively permissive licence conditions, but restricts redistribution of source code. For Unreal

Engine 4 then, at least, this level of access and rights would likely be sufficient to carry out

any code migration work in order to maintain access. For Unity this is less clear, as we do not

know how sympathetic the company would be to requests for access and rights from the

cultural heritage sector.

Assuming the necessary source code access and modification rights can be gained, we are

presented with a secondary issue in the feasibility of carrying out modifications or rewrites.

Modern game engines such as Unity and Unreal Engine are complex and sizeable pieces of

software, developed by large teams over many years. What level of effort would be required

to modify or rewrite the code base behind such an engine, in order to get it running in a different

technical environment? Would an organisation working in the cultural heritage sector have

87 Deena Engel and Glenn Wharton, Reading between the Lines: Source Code Documentation as a

Conservation Strategy for Software-Based Art, Studies in Conservation 59 (6): 404–15, 2014,
https://doi.org/10.1179/2047058413Y.0000000115.
88 Deena Engel and Joanna Phillips, ‘Introducing ‘Code Resituation’: Applying the Concept of Minimal

Intervention to the Conservation Treatment of Software-based Art’, Electronic Media Review 5, 2018,
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/engel-2/.
89 Mark Hellar, The Artist and the Technologist, 2019, https://journal.voca.network/the-artist-and-the-

technologist/

https://doi.org/10.1179/2047058413Y.0000000115
https://resources.culturalheritage.org/emg-review/volume-5-2017-2018/engel-2/
https://journal.voca.network/the-artist-and-the-technologist/
https://journal.voca.network/the-artist-and-the-technologist/

50

access to the resources that would be required to carry out such a task? Without case studies

from the field of time-based media conservation, we can instead look for insights in other fields.

In the video game industry the process of porting — a term essentially analogous to code

migration — is a common activity in the development of video games. This is a useful

reference point as video games use the same real-time 3D technologies that VR artworks

employ. Within the industry, porting is often handled by specialist studios. There are relatively

few examples of the details of this work being discussed in public forums, but insights from

porting studio indicate that this is a complex and time-consuming process9091. Both articles

touch on ways in which changes to a game can be wrought by the process of porting, with

Frank Cifaldi arguing in the latter that, "with all the moving parts involved in engineering for

specific platforms it’s I would say impossible to exactly replicate." This is a significant concern

in an art conservation context, where issues of authenticity and the potential loss of work-

defining characteristics are important considerations.

If engine source code is not available, we might consider migration as theoretically viable

between game engines, a process which would involve asset or scene migration and manual

reconstruction of other dynamic elements such as scripting and custom programming or

plugins. There are many potential pitfalls to this process, however. The first is that it is reliant

on being able to export assets in a suitable format and without loss of any of their properties.

Further research is required to understand how feasible this is, but there may be benefits to

preserving assets independently of the engines they were created in — a significant challenge

given the number of formats and tools involved in these workflows. It is also likely to be limited

to those assets (or scene components more generally) which are exportable at all. Some, such

as particle systems, lights and components using custom code, will need to be manually

reconstructed in the new engine as they cannot be exported to an interchange format. Whether

this might result in loss of important characteristics is uncertain without further research, and

dependent on the design of future game engines. Even in the best-case scenario that assets

can be migrated, features built into the new engine may not match those of the original engine.

For example, the implementation of material shaders may differ, resulting in changes to

characteristics of the rendered image. Again, this is not something we can hope to fully

understand at this time; there are no case studies that we are aware of and we cannot predict

the future development of real-time 3D software.

As this discussion has highlighted, there is a great deal we don’t yet understand about code

migration’s potential uses in preserving VR artworks. However, there are certain essential

steps that can be taken now to prepare for the possibility of code migration. The most important

of these is to ensure that production materials are acquired where possible, and that efforts

are made to gather all the third-party dependencies required to open and compile these source

projects. As discussed in 5.1.1. Acquiring Real-Time 3D VR Artworks, disk imaging appears

to offer a suitable solution to capturing production environments, with some caveats. Where

only the source project is acquired, future access to this will be contingent on access to engine

binaries and other third-party software. This points to a need for this kind of software to be

90 Alex Wawro, What exactly goes into porting a video game? BlitWorks explains, 2014,

https://www.gamasutra.com/view/news/222363/What_exactly_goes_into_porting_a_video_game_Blit
Works_explains.php.
91 Tom Bennet, Bridging the generation gap: Porting games to new platforms, 2015,

https://www.polygon.com/features/2015/11/30/9790028/video-game-ports-remasters-the-last-of-us.

https://www.gamasutra.com/view/news/222363/What_exactly_goes_into_porting_a_video_game_BlitWorks_explains.php
https://www.gamasutra.com/view/news/222363/What_exactly_goes_into_porting_a_video_game_BlitWorks_explains.php
https://www.polygon.com/features/2015/11/30/9790028/video-game-ports-remasters-the-last-of-us

51

preserved and access to it maintained, be it by its manufacturers or an independent body.

While this work may be occuring within the industry, this is not clear from available information.

What a body outside of the industry might look like, or whether it might already exist is also

unclear and requires further collaboration within the cultural heritage sector to determine. For

now, the feasibility of code migration as a preservation strategy for VR artworks remains

difficult to meaningfully assess. It offers a rich area for future research however, and case

studies testing the viability of the process would be particularly valuable. One potentially

interesting approach would be to explore artworks produced for older VR technologies from

the 1990s as case studies for migration to current generation hardware.

52

6. Summary and Recommendations

In Section 2 we identified the key components of a VR system and their complex

interdependencies. We ascertained how variance in the characteristics of a VR artwork might

occur through the use of different hardware and software components. Due to the rapidly

evolving commercial landscape of VR manufacturing, hardware components are at high risk

of obsolescence, threatening the sustainability of VR systems. This is exacerbated by a lack

of standardisation in VR runtime software, which has a critical role in allowing access to VR

hardware. We discussed how open standards in this area could provide potential for migration

in the future, particularly the OpenXR specification.

In Section 3 we examined the production environments in which RT3D artworks are created.

We highlighted their reliance on game engine technologies and the difficulty of accessing

legacy versions of these. We identified long-term access to source materials as a potential

challenge for preservation, particularly due to restrictive access conditions for engine source

code. Later in Section 5, we discussed an approach to capturing production environments

using disk imaging, although this requires further practical case studies to fully understand the

implications of creating and managing these. We found that compiled VR applications can be

acquired using a similar approach to other real-time 3D software, although careful verification

of rendering and performance characteristics is required during playback. Finally, we briefly

explored approaches to the documentation of real-time 3D VR, focusing on our own

acquisition information gathering template and video capture as key topics for future research.

In Section 4 we explore how 360 video can be generated in monoscopic or stereoscopic

formats from a variety of camera types and layouts. The process of making this raw footage

viewable through stitching is examined, along with the implications for preservation. Two

popular projection formats are looked at in detail and it is acknowledged that there is likely to

be development in projection format types, driven in part by the popularity of streaming 360

video. We then examine the audio components of 360 video and highlight different file

conventions that could cause discrepancies in playback. Due to the many permutations of

projection type and audio conventions, we highlight the importance of metadata accuracy for

preservation. Briefly, we explore the generation of depth maps that enable 360 video to have

a sense of movement that mimics the 6DoF afforded by RT3D. We note that the development

of depth maps in 360 video potentially has computational requirements similar to RT3D

processing.

In Section 5 we discussed the feasibility of applying existing acquisition workflows and

preservation strategies to VR artworks as a way of managing change. We proposed that real-

time 3D VR can benefit from the use of approaches to acquisition used for other forms of

software-based art, such as sourcing duplicate hardware and creating disk images. Benefits

and challenges to acquiring source materials and generating multiple builds were also

discussed. 360 video was found to have many similarities to other forms of digital video,

although extra care is required to ensure that the most appropriate masters are sourced and

that metadata is appropriately captured.

We also discussed the potential feasibility of several treatment approaches for real-time 3D

VR artworks. Stockpiling hardware is unlikely to offer a feasible strategy, particularly given

53

uncertainties around access to networks required for ongoing maintenance and repair. If like-

for-like replacement of hardware becomes impossible, we will be relying on approaches which

are currently uncertain and untested. The usefulness of hardware migration is likely to be

limited by adoption of open standards for XR runtimes in the short-term, and then eventually

by the obsolescence of other software environment components (e.g. operating system and

drivers) on which the target VR application depends. We noted that it is also likely to change

characteristics of the artwork. The usefulness of emulation is limited by lack of support for XR

and 3D rendering in emulation tools in current tools. Code migration presents the most

uncertainties of all the strategies, given the lack of precedent in art conservation for migrating

real-time 3D software to new engines. We proposed incremental migration to new engine

versions as one treatment approach with short-term use.

We conclude this report by offering a set of recommendations for artists and institutions who

are dealing with the immediate problem of caring from VR artworks. These strategies are

based on a set of case studies, development of established acquisition workflows and steps

required to prepare for future preservation procedures. They represent a snapshot of our

understanding of this topic at this time and we hope will be refined and built upon by others.

With that in mind, we also provide a set of recommendations for future research topics in this

area.

54

6.1. Recommendations for Artists

For artists we recommend the following steps are taken as a short-term stabilisation strategy

for the VR works they are caring for:

● Ensure you have a complete offline VR system (including hardware and software)

configured and correctly running on the target hardware.

● Capture and archive a disk image(s) of the contents of the primary storage volumes of

this computer system.

● Ensure you have a duplicate backup of this system (including hardware and software).

For VR artworks with a real-time 3D component, we recommend the following additional steps

are taken:

● Create software builds for as many suitable platforms as possible, test them and

archive these with configuration instructions.

● Maximise application support for a variety of VR hardware by using all suitable VR

plugins and SDKs in the software builds created.

● Carefully manage engine projects and assets so that they are contained within a single

location, and retain an installer or package of the relevant engine version binaries.

● Archive snapshot(s) of a production environment (typically consisting of at least

configured game engine binaries and project files), ideally as a disk image.

For VR artworks with a 360 video component, we recommend the following additional steps

are taken:

● Consider archiving raw camera output to allow footage to be re-stitched in higher

resolution as technology progresses.

● Consider archiving the complete production environment for re-export, ideally as a disk

image.

● In the case of works exported from RT3D engines, consider archiving the production

environment, including project files and engine binaries, ideally as a disk image.

● Ensure that the file metadata accurately describes all parameters such as projection

format, distortion map and spatial audio conventions. If possible, test on a variety of

players for consistency.

55

6.2. Recommendations for Collecting Institutions

For collecting institutions, we recommend the following steps are taken as a short term

stabilisation strategy for the VR works they are caring for:

● Ensure you have a complete offline VR system (including hardware and software)

configured and correctly running on the target hardware.

● Capture and archive a disk image(s) of the contents of the primary storage volumes of

this computer system.

● Ensure you have a duplicate backup of this system (including hardware and software).

For VR artworks with a real-time 3D software component, we recommend the following

additional steps are taken:

● Acquire or create software builds for as many suitable platforms as possible, test them

and archive these with configuration instructions.

● Maximise application support for a variety of VR hardware by using all suitable VR

plugins and SDKs in the software builds created.

● Acquire or recreate a production environment (typically consisting of at least configured

game engine binaries and project files), verify it and archive as a disk image or

component parts.

For VR artworks with a 360 video component, we recommend the following additional steps

are taken:

● Attempt to play the video file on a variety of different software players and untethered

headsets as reasonably possible, identifying any variances in audio or video.

● Verify that the metadata correctly describes the projection format, distortion map, and

spatial audio convention.

● In the case of works captured from camera, consider archiving raw camera files to

enable re-stitching at higher resolutions as technology progresses.

● In the case of works exported from RT3D engines, consider archiving the production

environment, including project files and engine binaries, ideally as a disk image.

● Consider a regular maintenance task of playing the artwork on the latest generation of

headset to identify potential change.

56

6.3. Recommendations for Further Work

For VR artworks in general we have identified the following priorities for further work in this

area:

● Monitor development and support adoption of open standards for VR.

● Development of a framework for gathering and interpreting artwork documentation,

including external video capture, screen capture, artists description, narration etc.

For real-time 3D VR artworks we have identified the following priorities for further work in this

area:

● Monitor development and support adoption of open standards for real-time 3D

software.

● Support further research into the practicality of maintenance as a preservation

strategy, including how frequently maintenance would be required.

● Support further research in understanding variability in real-time 3D rendering, and the

effective documentation and management of performance and rendering

characteristics.

● Monitor and support the development of emulation and virtualization and their support

real-time 3D rendering.

● Support further research into 3D formats for stabilising 3D model assets.

● Support further research into better understanding how to effectively capture fixed-

view and 360 video from real-time 3D VR artworks.

For 360 video we have identified the following priorities for further work in this area:

● Monitor the evolution of metadata standards and their adoption.

● Monitor the evolution of projection formats and the implications for player compatibility

and sustainability.

● Monitor the evolution of tools that generate depth or 6DoF information from

stereoscopic 360 video and consider the implications for future playback.

● Monitor the evolution of volumetric video capture, and the increased dependency on

real time rendering for its playback.

● Monitor the evolution of 360 video file types and assess the suitability of media

migration.

	Abstract
	Acknowledgements
	Contents
	1. Introduction
	2. VR Systems
	2.1. VR System Hardware
	2.1.1. Head-Mounted Displays
	2.1.2. Tracking Systems
	2.1.3. Controllers
	2.1.4. Computers

	2.2. VR System Software
	2.2.1. VR Runtimes
	2.2.2. Operating Systems
	2.2.3. 3D APIs
	2.2.4. VR Device Drivers
	2.2.5. GPU Drivers

	3. Real-Time 3D VR
	3.1. Real-Time 3D VR Production Materials
	3.1.1. Engines and Project Files
	3.1.2. Scenes and Assets

	3.2. Real-Time 3D VR Applications
	3.2.1. Application Packages
	3.2.2. Executing an Application

	3.3. Real-Time 3D VR Documentation
	3.3.1. Acquisition Information Template
	3.3.2. User-Perspective Video Capture

	4. 360 Video
	4.1. 360 Video Production Materials
	4.1.1. Camera Capture
	4.1.2. Stitching
	4.1.3. Projection Format

	4.2. 360 Video Audio
	4.2.1. Order of Ambisonics
	4.2.2. Ambisonic Formats
	4.2.3. Head-related Transfer Functions
	4.2.4. Format Conventions

	4.3. 360 Video File Types & Metadata
	4.3.1. Aspect Ratio and Resolution
	4.3.2. Frame Rates
	4.3.3. File Sizes
	4.3.4. Metadata

	4.4. 6DOF & Volumetric Video

	5. Suitability of Existing Preservation Strategies
	5.1. Acquiring VR Artworks
	5.1.1. Acquiring Real-Time 3D VR Artworks
	5.1.2. Acquiring 360 Video VR Artworks

	5.2. Hardware Stockpiling
	5.3. Hardware Migration
	5.4. Emulation and Related Approaches
	5.5. Code Migration and Related Approaches

	6. Summary and Recommendations
	6.1. Recommendations for Artists
	6.2. Recommendations for Collecting Institutions
	6.3. Recommendations for Further Work

